Camshaft install tips and tricks
(→Pre-lube) |
(→Valve springs) |
||
Line 44: | Line 44: | ||
====Valve springs==== | ====Valve springs==== | ||
− | ''' | + | '''10. Failure to use the proper valve springs for cam break-in.''' |
You can't use the 300 lb over-the-nose springs that you'll eventually use in the motor, and expect the cam to live at break-in. Assemble the heads with stock or weak single springs (if those springs will accept the amount of valve lift and the retainers will clear the valve seals/valve guides) to break in the cam, then use one of the many tools available to change the springs with the heads on the motor. Those without shop air to hold the valves up through this operation can feed some clothesline cord through the spark plug hole and then bring the piston up to smash the rope and hold the valves up. Alternately, assemble the heads with the springs you will run and use reduced-ratio break-in rockers, then change out the rockers after break-in. Although expensive, these are available from [http://crower.com/ Crower] in different ratios for different motors. A popular ratio for a small block Chevy would be a 1.3:1 rocker. In other words, let's say the lift at the cam is 0.350" and the theoretical lift at the valve with 1.5:1 rockers is 0.525". Using the 1.3:1 rockers would result in lift at the valve of only 0.455", thus reducing stress at the camshaft/lifter interface during the crucial break-in period. Of course, you would have to elongate the pushrod holes to accommodate the longer pushrod cup to pivot dimension and maybe alter the slots in your guide plates as well. | You can't use the 300 lb over-the-nose springs that you'll eventually use in the motor, and expect the cam to live at break-in. Assemble the heads with stock or weak single springs (if those springs will accept the amount of valve lift and the retainers will clear the valve seals/valve guides) to break in the cam, then use one of the many tools available to change the springs with the heads on the motor. Those without shop air to hold the valves up through this operation can feed some clothesline cord through the spark plug hole and then bring the piston up to smash the rope and hold the valves up. Alternately, assemble the heads with the springs you will run and use reduced-ratio break-in rockers, then change out the rockers after break-in. Although expensive, these are available from [http://crower.com/ Crower] in different ratios for different motors. A popular ratio for a small block Chevy would be a 1.3:1 rocker. In other words, let's say the lift at the cam is 0.350" and the theoretical lift at the valve with 1.5:1 rockers is 0.525". Using the 1.3:1 rockers would result in lift at the valve of only 0.455", thus reducing stress at the camshaft/lifter interface during the crucial break-in period. Of course, you would have to elongate the pushrod holes to accommodate the longer pushrod cup to pivot dimension and maybe alter the slots in your guide plates as well. | ||
− | ''' | + | '''11. Failure to check for valve spring coil bind at max lift.''' |
If you cannot tell by eye, verify by inserting a .010" feeler gauge between the coils. A .010" between five coils would give a total of .050" safety margin before stacking the spring solid. If you cannot pass the feeler gauge between the coils, the spring is either coil bound or dangerously close to this condition, and you have probably over shimmed the spring (the fitted dimension is too short). | If you cannot tell by eye, verify by inserting a .010" feeler gauge between the coils. A .010" between five coils would give a total of .050" safety margin before stacking the spring solid. If you cannot pass the feeler gauge between the coils, the spring is either coil bound or dangerously close to this condition, and you have probably over shimmed the spring (the fitted dimension is too short). | ||
− | ''' | + | '''12. Failure to check for retainer to valve guide/seal clearance.''' |
1/16"-1/8" clearance at full valve lift is considered sufficient. This is the limiting lift factor with the stock L31 Vortec heads. Most uninformed people will say they can run a 0.500" lift cam with them stock. That leaves ZERO clearance between the retainer and the seal. Not good. GM says the limit is about 0.420" with the stock pieces. GM engineers say 0.420" lift allows 0.030" retainer-to-seal clearance. | 1/16"-1/8" clearance at full valve lift is considered sufficient. This is the limiting lift factor with the stock L31 Vortec heads. Most uninformed people will say they can run a 0.500" lift cam with them stock. That leaves ZERO clearance between the retainer and the seal. Not good. GM says the limit is about 0.420" with the stock pieces. GM engineers say 0.420" lift allows 0.030" retainer-to-seal clearance. |