Basic modifications for newbies
From Crankshaft Coalition Wiki
m (Add link, minor edit.) |
m (Add category) |
||
Line 1: | Line 1: | ||
{{youcanedit}} | {{youcanedit}} | ||
− | + | [[File:Bling.jpg|frame|Don't overdo it! This engine has it all- and it's too much without some contrasting elements]] | |
− | + | ||
− | + | ||
==Overview== | ==Overview== | ||
There are numerous sources of information to assist the untrained individual in the rebuilding or repairing of specific components of a vehicle, but there needs to be a place where he/she can learn what to do and what not to do in the modification of their vehicle(s). This article will attempt to fill in the blank spaces in their understanding concerning these modifications. | There are numerous sources of information to assist the untrained individual in the rebuilding or repairing of specific components of a vehicle, but there needs to be a place where he/she can learn what to do and what not to do in the modification of their vehicle(s). This article will attempt to fill in the blank spaces in their understanding concerning these modifications. | ||
− | |||
− | == | + | ==Modifications to be made== |
It is usually cheaper and easier to begin making mods to the motor and that's where most everybody starts in their quest to make the vehicle faster/quicker. | It is usually cheaper and easier to begin making mods to the motor and that's where most everybody starts in their quest to make the vehicle faster/quicker. | ||
Line 14: | Line 11: | ||
This type of vehicle was designed for all sorts of people, the vast majority of these owners expect good fuel mileage, dependability, and quiet operation. The cam, intake and exhaust systems, gear ratios, torque converter stall speed, and other parts that came stock on the vehicle were designed to accomplish this goal. When you begin changing parts, you are upsetting this balance of systems and characteristics that were built into the vehicle at the factory. | This type of vehicle was designed for all sorts of people, the vast majority of these owners expect good fuel mileage, dependability, and quiet operation. The cam, intake and exhaust systems, gear ratios, torque converter stall speed, and other parts that came stock on the vehicle were designed to accomplish this goal. When you begin changing parts, you are upsetting this balance of systems and characteristics that were built into the vehicle at the factory. | ||
− | The first things that are often changed are the | + | ==First steps- the "bolt-ons"== |
+ | The first things that are often changed are the air cleaner/intake manifold/carburetor (if working on a pre-EFI motor), and the exhaust system. | ||
− | + | ===Engine dress up kits=== | |
+ | [[File:Summit dressup sbc chrome.jpg|thumb|400px|Summit chrome dress up kit for SBC, ~$80.00 as of 2012]] | ||
+ | Included in the bolt-ons are the "dress up kits". These consist of (usually) a set of valve covers and hold-down hardware, an air cleaner lid and base, sometimes a chrome timing cover, plug wire separators/looms, sometimes hose covering, etc. The quality varies greatly- the cheap sets have poor chrome and are stamped from thin steel while the better sets are heavier and plating is deeper. The hose covers are total junk, don't use it; a clean hose looks better to many than the cheesy covers anyway. | ||
− | + | Chrome timing covers are known for leaking, as are chrome steel aftermarket oil pans. Often the stock parts- after being cleaned and painted/detailed- will look every bit as good if not better than cheap chrome parts. | |
− | + | Cost varies with quality and contents. Cheapest for chrome valve covers and a timing cover is about $35.00 as of 2012. | |
+ | <br style="clear:both"/> | ||
+ | ===Clean, cold air=== | ||
+ | Stock air cleaners are often restrictive. Replacing a stock filter housing with a free-flowing air cleaner and element can help performance, especially if the air routed to it is from the outside of the engine compartment. | ||
− | + | The base of the air cleaner is an important part of the induction system, believe it or not. If the base is table-top flat, it will hurt flow. A good base has a gently curving form to it that will allow the air to straighten and flow into the carb instead of becoming turbulent. The basic shape that's wanted can be seen on the air cleaner bases shown [http://www.crankshaftcoalition.com/wiki/Drop_base_type_air_cleaner#CFD here]. | |
− | + | The OE base can sometimes be used in modified form. They often have a good shape and if from a Q-jet equipped engine, the linkage and carb in general will fit without needing any tweaking- which is something that's sometimes needed when using an aftermarket base. | |
+ | {{warning|ANY base that's used- if different than stock- has to be carefully checked for clearance and throttle linkage binding. In some cases the accelerator pump arm can hit, vent tubes can hit, etc. So take the time to be absolutely sure that there's nothing hitting or binding that could cause the throttle to hang up.}} | ||
− | + | ===Intake manifold=== | |
− | + | Many OE intake manifolds are restrictive. If the original intake is a 2-barrel, it should be replaced with at least a factory 4-barrel intake, or better yet an aftermarket intake made of aluminum. '''[http://www.edelbrock.com/automotive_new/mc/manifolds/manifolds_main.shtml Edelbrock]''' makes intakes for just about any domestic engine, [http://www.summitracing.com/search/Brand/Weiand/Department/Air-Fuel-Delivery/Section/Intake-Manifolds/?Ns=Rank|Asc&autoview=ProductName&gclid=CLXosJWlk7ACFUyb7QodKTjJqg Weiand] also makes a quality intake. | |
− | + | ||
− | + | ===Carb=== | |
+ | If the engine is a GM, the Q-jet is a natural choice. Other carbs can work well, too, like the Edelbrock Performer/Thunder series, or the Holley line of carbs. More on choosing a carb '''[http://www.crankshaftcoalition.com/wiki/Choosing_a_carburetor here]''' | ||
− | + | ===Exhaust system=== | |
− | + | ====Dual exhaust==== | |
+ | Dual exhaust is a must for most any performance vehicle. While there are some applications that may benefit from a large, single exhaust, most times a dual system will be the best. | ||
− | + | Using a pair of pipes is only part of the picture- the pipes need to be large enough to expel the exhaust but not so large the pipes are too hard to route beneath the vehicle. Generally speaking, a 350 SBC engine can use a 2-1/2" dual exhaust. BB engines or competition applications may go larger, depending. | |
− | + | ====Headers==== | |
+ | One of the biggest improvements in the engine efficiency is installing a long tube exhaust header system. Most vehicles will be covered by [http://www.holley.com/Index.asp?division=Hooker Hooker], [http://www.hedman.com/ Hedman], or one of the other header manufacturers. In the event that space or availability is limited, a "shorty"-type header is next best, followed by a "block hugger"-type header. But any of these is going to be better than the stock cast iron exhaust manifolds like used on millions of Gen 1 SBC, Ford, MOPAR, AMC, etc. engines produced from the '50s through 2000 or so. | ||
− | + | ====Crossover pipe==== | |
+ | Using an "H" or "X" pipe to connect the two sides will change the tone of the exhaust to a more pleasant tone, to most people. Along with that comes a slight increase in power in the midrange in many applications. The connection should be made after the collector and before the mufflers. | ||
− | == | + | ====Mufflers==== |
+ | Ask any ten guys what mufflers are best and you'll probably get 7-8 different answers. Going by tests, the Walker line of turbo-style mufflers get good reviews year in and year out. There's a large following for Flow Master, others say they don't flow well. There are those who swear by "glass pack" mufflers, others don't care for them, etc. right down the line. | ||
− | + | There are literally thousands of YouTube videos of different mufflers and exhaust systems, including sound bites by the companies themselves. Take the time to research this very important component for yourself until you are satisfied with your decision. | |
− | + | ||
− | + | ||
− | + | ==Camshaft and compression ratio== | |
− | + | First, the #1 mistake is believing that changing the camshaft alone will make a lot more horsepower. A cam change can make more power, but he cam must be matched to the static compression ratio (SCR) of the motor. The most important timing event on a camshaft is the '''intake valve closing point'''. The intake valve begins to open at some point before the piston gets to top dead center (TDC) on the exhaust stroke. The piston descends in the bore with the intake valve open and the cylinder is filled with air/fuel mixture. After the piston gets to bottom dead center (BDC) and starts back up on the compression stroke, the intake valve closes and compression begins. If we are beginning with a stock motor on which the static compression ratio is somewhere around 8.5:1 and put a cam in that has more duration and closes the intake valve later than was designed for at the factory, the piston will push some of the air/fuel mixture back through the still-open intake valve and cylinder pressure will be lower than it was with the stock cam that closed the intake valve at exactly the right point to work with the stock static compression ratio. | |
− | + | ||
− | + | ==Cam lobe separation angle (LSA)== | |
+ | So if you're going with more cam, then raise the SCR so that the cam and static compression ratio are matched. The OEM's have super computers that tell them exactly the timing points to be ground into the cam to match the SCR and make power at the rpm the general public expects. This is usually idle to ~4,000 rpm or a little higher. Any cam will have an operating range of roughly 3,500 rpm. In other words, it will be efficient from idle to 4,000 or 1,000 to 4,500 or 2,000 to 5,500 or 3,500 to 7,000 or whatever, depending on the valve opening and closing points ground into the cam when it is manufactured. It will also have a wide lobe separation angle or "LSA" (max lift intake point after top dead center added to max lift exhaust point before top dead center and divided by 2) for good manifold vacuum to properly operate power brakes and other vacuum operated accessories and contribute to a smooth idle (Grandma doesn't want the motor going RUMPTY-RUMP when she's on the way to bingo and there are a lot more little old ladies buying cars than there are hot rodders). An OEM cam might be measured at 114 to 118 degrees LSA for instance. | ||
− | + | You can figure the LSA yourself. Let's say that the intake centerline is 106 degrees after top dead center (ATDC) and the exhaust centerline is 114 degrees before top dead center (BTDC). Add 106 to 114 and divide by 2 to find a LSA of 110 degrees. You might also see LSA expressed as lobe displacement angle. This is not to be confused with lobe center. Lobe center is the point of maximum lift of the lobe, ATDC for the intake lobe and BTDC for the exhaust lobe. | |
− | + | '''Also see''': [[How to choose a camshaft]] | |
− | + | Now, say the decision is made that the motor needs more cam. In most cases, the SCR of the motor is unknown. Also unknown is the piston deck height, the squish clearance, or anything else. All that's known is that he wants the RUMPTY-RUMP that he heard coming from the Super Comp motor he heard at the drag strip or the hot rod down at the Sonic Drive In. What he may not know is that the motor in that Super Comp car has upwards of fifteen to twenty thousand dollars invested in it and is maximized for racing. It idles like that because the cam has to be very aggressive to work with the 12.0:1 to 16.0:1 SCR that is built into the motor. It may have been designed to make power from 4,500 to 8,000 rpm for instance and will be coupled to a very loose torque converter that stalls around 5,000 rpm for instance. As far as the hot rod down at the Sonic, that owner may have used a cam such as a Thumpr to get that sound and the car may not be as fast as it sounds. | |
− | + | I'm just throwing these numbers around to show you that the cam in the Super Comp motor will not work in your street-driven 350 Chevy. The Thumpr cam ''may'' work, but you may be able to make more horsepower and torque by matching the other motor characteristics to the proper camshaft and still have your rump-rump. | |
− | + | I've gotten a little off track with my explanation. We need to go back to what a newbie should do to his vehicle FIRST. | |
− | + | ==Gear ratio== | |
+ | After rebuilding the brakes, steering and suspension the first modification done to an otherwise stock auto/truck should usually be a different gear ratio. A good compromise between mileage and acceleration in a street car is somewhere around 3.70:1 ratio. If the owner intends to change this vehicle into a semi-serious street/drag car, then additional aftermarket traction devices such as anti-wheel hop products and tires with different rubber compound should be considered, along with strengthening and stiffening the chassis/body. Even more serious competitors should consider mini-tubs or full tubs in the car to accommodate wide racing slicks, along with a roll cage to tie the chassis together better. A large number of racers who show up at my track mount slicks on separate wheels (wide steel wheels will work just fine) to be bolted to the car after they drive it in off the street. | ||
− | + | '''Also see''': [http://www.crankshaftcoalition.com/wiki/Why_a_shorter_rear_gear_will_accelerate_the_car_quicker Why a shorter rear gear will accelerate the car quicker] for more on this subject. | |
− | + | Of course, when it comes to traction, a limited slip differential like the Chevrolet Posi-Traction or aftermarket Detroit Locker or Auburn units or similar units will do an excellent job of hooking up both tires. However, these are not mandatory to get both tires to pull and not spin the passenger side tire. | |
− | + | With a front-motor, rear-drive vehicle, the chassis twists diagonally upon application of power. The left front gets lighter and the right rear gets lighter. The right front and the left rear get heavier. This is why you will see the right rear tire spin while the left rear hooks up on a car with an "open" differential. The right rear is light and needs additional weight applied to it. This can be accomplished cheaply and easily by installing an air shock to replace the conventional shock absorber on that side, or an air bag on the right rear '''''only'''''. Experimenting with the air pressure in the shock/bag will allow you to equalize the weight applied to both rear tires on acceleration and "hook up" both tires without going to the expense of installing a locking device in the differential. Just keep adding air pressure to the shock until you have two equal length black tire stripes on the pavement when accelerating from a stand-still. I've done this many times and have seen other racers do it with equal success. An additional benefit is that the car will be easier to drive at the strip with an open differential that has been "weight equalized". | |
− | + | ==Transmission== | |
+ | Now, with the rear end nailed down and operating, it's time to move on to the middle of the car and take a look at the transmission and torque converter, assuming an automatic transmission will be used. If the transmission is a manual shift, then overlook the following information and go lower higher numerically) on the rear gear (4.10, 4.56, etc.). | ||
− | + | If the car is very light (under 2,800 lbs with driver aboard), then a 2-speed automatic like the Powerglide will work well on the drag strip and should work on the street as well. Heavier cars should use a 3 or 4-speed AT. If fuel mileage is a concern in your world-beater, then a 4-speed overdrive auto is probably the better choice. I'll leave it to someone else to go into detail about the choices here, but the GM 700R4 has shown to be a good choice for non-computer applications. They can be beefed up to take considerable abuse. | |
− | + | ==Torque converter== | |
+ | The next component to be addressed is the torque converter. It is mandatory that the converter is matched to the camshaft you'll be using. As was stated earlier in this article, stock converters will stall at around 1,200 to 1,400 rpm, depending on the amount of torque produced by the motor among other things and that's fine when you are using a stock-type cam that begins making power at idle. But when you change the cam out for a longer duration/higher lift model, you're no longer making power from idle and the car will be a dog until the rpm increase to the point where the motor is making power. One way around this is to install a converter that stalls higher than stock so that the motor comes up on the cam quicker and the car accelerates faster. If you install a cam that operates between 3,500 and 7,000 rpm and use a converter that stalls at 1,200, you can see that the motor will not be producing enough torque from 1,200 to 3,500 to move the car efficiently. The car will be a D-O-G. On the other hand, if you use the 3,500-7,000 cam with a converter that stalls at around 3,500, then when you nail the loud pedal, the motor will rev up close to the stall speed of the converter and you'll be making power and applying torque to the rear tires sooner. | ||
− | + | '''Please note''': Each application is different. A trusted professional torque converter manufacturer should be consulted before purchasing a torque converter! | |
− | + | ||
− | + | ||
− | + | ||
+ | [http://www.hughesperformance.com/index.php?option=com_content&view=section&layout=blog&id=5&Itemid=27 Hughes Performance] is a good place to start with. Jim Hughes is said to be a man of honesty and integrity, both personally and professionally. | ||
==Resources== | ==Resources== | ||
− | *[http://www.crankshaftcoalition.com/wiki/Chevrolet_engine_rebuild_guide_books_and_DVDs Books and DVDs | + | *[http://www.crankshaftcoalition.com/wiki/Chevrolet_engine_rebuild_guide_books_and_DVDs Books and DVDs] |
− | *[ | + | *[http://www.crankshaftcoalition.com/wiki/Category:Camshaft Camshaft section] of the Crankshaft Coalition wiki] |
− | + | ||
− | + | ||
+ | [[Category:Engine]] | ||
[[Category:General hotrodding]] | [[Category:General hotrodding]] |