How to choose a camshaft

From Crankshaft Coalition Wiki
Jump to: navigation, search
m (Phasing the camshaft)
(Lobe intensity)
 
Line 1: Line 1:
 
[[File:Comp valve train img.jpg|thumb|right|500px|From Comp Cams]]  
 
[[File:Comp valve train img.jpg|thumb|right|500px|From Comp Cams]]  
[[File:Rocker3.gif|thumb|left|200px]]
 
  
 
==Overview==
 
==Overview==
Line 41: Line 40:
 
*Less duration is best for: heavier cars, tow vehicles, higher rear axle gearing (lower numerically), lower stall converters, smaller head ports and flow, lower compression (to prevent too much cylinder pressures during cranking) and higher transmission gearing.
 
*Less duration is best for: heavier cars, tow vehicles, higher rear axle gearing (lower numerically), lower stall converters, smaller head ports and flow, lower compression (to prevent too much cylinder pressures during cranking) and higher transmission gearing.
 
   
 
   
 +
====Calculating duration====
 
If the duration is not stated on the cam card, it can be easily calculated by adding the intake opening point in degrees to the exhaust closing point.  
 
If the duration is not stated on the cam card, it can be easily calculated by adding the intake opening point in degrees to the exhaust closing point.  
  
If those points are not known isn't known, you can estimate the duration by using the advertised duration and the lobe separation angle:  
+
If those points are not known, you can estimate the duration by using the advertised duration and the lobe separation angle:  
 
#Add the intake and exhaust advertised durations, then  
 
#Add the intake and exhaust advertised durations, then  
 
#divide the results by 4, then  
 
#divide the results by 4, then  
 
#subtract the lobe separation angle, then  
 
#subtract the lobe separation angle, then  
#multiply the results by 2  
+
#multiply the results by 2
  
===LSA===
+
===Lobe separation angle (LSA)===
Lobe Separation Angle, sometimes called lobe ''displacement'' angle. The LSA is a measurement in ''camshaft'' degrees that states how far apart the maximum lift points of the exhaust and intake lobes are. This number is ground into the cam and can't be altered without physically changing the camshaft lobe profiles.
+
The lobe separation angle, sometimes called lobe ''displacement'' angle, is a measurement in ''camshaft'' degrees that states how far apart the maximum lift points of the exhaust and intake lobes are. This number is ground into the cam and can't be altered without physically changing the camshaft lobe profiles.
 
   
 
   
[[File:Las drawing.jpg|thumb]400px]] <br style="clear:both"/>
+
[[File:Las drawing.jpg|thumb|left|400px]] <br style="clear:both"/>
 +
 
 +
A CHP magazine article comparing identical camshafts except for the LSA (along with comparing open vs. split plenum intakes): [http://www.chevyhiperformance.com/tech/engines_drivetrain/cams_heads_valvetrain/0905chp_camshaft_lobe_separation_angle_performance_test/viewall.html '''Camshaft Lobe Separation Angle Performance Test''']
  
 
====Narrower LSA:====
 
====Narrower LSA:====
A narrower LSA will ''increase'' overlap.  This has a tendency to reduce engine output at lower RPM and increase engine output at higher RPM.  A narrower LSA tend to make more peak power but a little less average power.  
+
A narrower LSA will ''increase'' overlap.  This has a tendency to increase engine output at lower RPM and decrease engine output at higher RPM.  A narrower LSA tend to make less peak power but more average power.  
 
*Moves torque to lower RPM
 
*Moves torque to lower RPM
 
*Increases maximum torque
 
*Increases maximum torque
Line 85: Line 87:
  
 
===Overlap===
 
===Overlap===
This number (usually not found on the cam card) represents the amount of duration in camshaft degrees when both the exhaust and intake valves are open at the same time. This factor is ground into the cam and can't be changed without physically altering the camshaft lobe profiles. Increasing duration at the same LSA will increase overlap. Decreasing LSA at the same duration will also increase overlap.
+
[[File:Overlap estimator1.jpg|thumb|right|300px|Area '''1''' is for street towing, '''2''' is regular street, '''3''' is street performance, '''4''' is street/strip, '''5''' is race, and '''6''' is Pro race.]]
 +
"Overlap" represents the amount of duration in camshaft degrees when both the exhaust and intake valves are open at the same time. For a single cam engine this factor is ground into the cam and can't be changed without physically altering the camshaft lobe profiles. On a dual overhead camshaft (DOHC) engine overlap can be altered with adjustable cam gears. Adjusting one or more cams closer to TDC increases overlap. Increasing duration at the same LSA will increase overlap. Decreasing LSA at the same duration will also increase overlap.
 +
 
 +
Overlap is usually not found printed out on the cam card, but it's easy to calculate.
 +
*Add the intake opening point BTDC to the exhaust closing point ATDC.
 +
 
 +
If the intake opening and exhaust closing points aren't known, you can estimate the overlap by using the '''advertised duration''' (or duration @ 0.050" lift, etc.) and the '''lobe separation angle'''.
 +
*Add the intake and exhaust durations,
 +
*Then divide the results by 4,
 +
*Then subtract the lobe separation angle,
 +
*Then multiply the results by 2
 +
*The result is the overlap  <br style="clear:both"/>
  
 
Overlap and LSA are closely tied together. Increasing overlap contributes to a race cam's choppy idle, along with the intake valve closing point and the exhaust valve opening points. The extra time the valves are open at the same time causes what is called ''reversion'', which is a situation in which the exiting exhaust gasses are partially pushed back up into the intake runner at low speeds. This causes big fluctuations in vacuum and uneven fuel metering if a carb is used (EFI metering isn't affected but reversion can still be a problem). Once the engine reaches higher RPM, the overlap is helpful since it adds to the time the cylinder can be filled with air/fuel mixture. Also, a tuning effect can come into play where the fast-moving exhaust gasses create a slight vacuum which helps to pull in more air/fuel mixture and remove more spent exhaust gasses from the cylinder, which is called ''scavenging''. Overlap also has a large impact on the amount of intake manifold vacuum an engine makes. Less overlap allows more idle vacuum, and vice versa.   
 
Overlap and LSA are closely tied together. Increasing overlap contributes to a race cam's choppy idle, along with the intake valve closing point and the exhaust valve opening points. The extra time the valves are open at the same time causes what is called ''reversion'', which is a situation in which the exiting exhaust gasses are partially pushed back up into the intake runner at low speeds. This causes big fluctuations in vacuum and uneven fuel metering if a carb is used (EFI metering isn't affected but reversion can still be a problem). Once the engine reaches higher RPM, the overlap is helpful since it adds to the time the cylinder can be filled with air/fuel mixture. Also, a tuning effect can come into play where the fast-moving exhaust gasses create a slight vacuum which helps to pull in more air/fuel mixture and remove more spent exhaust gasses from the cylinder, which is called ''scavenging''. Overlap also has a large impact on the amount of intake manifold vacuum an engine makes. Less overlap allows more idle vacuum, and vice versa.   
  
More overlap (less vacuum) can cause tuning headaches with modern OEM engine management electronics and  EFI. It can also make tuning a carburetor more difficult. More overlap makes a choppy idle and tends to make peakier power for the same reason as a narrow LSA does. More overlap and the subsequent lower intake manifold vacuum might mean giving up vacuum-driven accessories like power brakes. Some cars even use vacuum to operate the climate control, headlight covers, door locks, and windshield wipers, so consideration for those devices has to be given if choosing a cam for a vehicle so equipped.
+
More overlap (less vacuum) can cause tuning headaches with modern OEM engine management electronics and  EFI. It can also make tuning a carburetor more difficult. More overlap makes a choppy idle and tends to make peakier power for the same reason as a narrow LSA does. More overlap and the subsequent lower intake manifold vacuum might mean giving up vacuum-driven accessories like power brakes. Some cars even use vacuum to operate the HVAC, headlight covers, door locks, and windshield wipers, so consideration for those devices has to be given if choosing a cam for a vehicle so equipped. If the vacuum produced is insufficient, a vacuum pump can be installed.
  
 
===Lobe intensity===
 
===Lobe intensity===
One more point about the cam profile is lobe intensity. For a given duration, more lift means the lobe ramps (the opening and closing faces on the sides of the lobe) are steeper (more intensity). That is to say, the cam lobe has has to accelerate the lifter faster to get to the peak lift within the available amount of duration duration. Faster ramp speed can give more "area under the curve", which usually equates to a broader, less peaky powerband. The downside for flat tappet cams is that the steeper ramps mean they contact the lifter at a greater angle, so the potential for wiping out a cam lobe or lifter is greater. Manufacturers are well aware of this, so they try to design the lobe profiles to optimize power, yet maintain good durability. Cam profiles like the Comp Cams XE-series and Lunati's Voodoo line are both at the edge of how fast the valve can be safely opened and closed. That's why they caution against using a higher ratio rocker arm when using these grinds. More on lobe intensity can be seen [http://www.harveycrane.com/duration.htm '''at this page'''] by Harvey Crane of Crane Cams.
+
One more point about the cam profile is lobe intensity. For a given duration, more lift means the lobe ramps (the opening and closing faces on the sides of the lobe) are steeper (more intensity). That is to say, the cam lobe has to accelerate the lifter faster to get to the peak lift within the available amount of duration duration. Faster ramp speed can give more "area under the curve", which usually equates to a broader, less peaky powerband. The downside for flat tappet cams is that the steeper ramps mean they contact the lifter at a greater angle, so the potential for wiping out a cam lobe or lifter is greater. Manufacturers are well aware of this, so they try to design the lobe profiles to optimize power, yet maintain good durability. Cam profiles like the Comp Cams XE-series and Lunati's Voodoo line are both at the edge of how fast the valve can be safely opened and closed. That's why they caution against using a higher ratio rocker arm when using these grinds. More on lobe intensity can be seen [http://www.harveycrane.com/duration.htm '''at this page'''] by Harvey Crane of Crane Cams.
  
 
===Intake centerline (ICL)===  
 
===Intake centerline (ICL)===  
This number represents where the intake lobe's peak lift occurs in relation to crankshaft rotation. It is the point of maximum lift of the intake lobe and is measured in ''crankshaft'' degrees. A cam ground "straight up" will mean that the exhaust lobe's peak lift will happen at the same amount of degrees before top dead center, as the intake valve will peak after top dead center. ICL is machined into the cam. When cam manufacturers machine the snout of the cam for the cam sprocket, they will drill the holes with the cam slightly advanced, retarded, or straight up.  When installed with stock components, the ICL can't be altered.  
+
This number represents where the intake lobe's peak lift occurs in relation to crankshaft rotation. It is the point of maximum lift of the intake lobe and is measured in ''crankshaft'' degrees. A cam ground "straight up" means that the exhaust lobe's peak lift will happen at the same amount of degrees before top dead center, as the intake valve will peak after top dead center if the intake and exhaust durations are the same. ICL is machined into the cam. When cam manufacturers machine the snout of the cam for the cam sprocket, they will drill the holes with the cam slightly advanced, retarded, or straight up.  When installed with stock components, the ICL can't be altered.  
  
 
Aftermarket timing set gears often have provisions for altering the cam timing by advancing or retarding the cam position in relationship to the crankshaft position. If the cam card shows the LSA is the same as ICL, the cam is said to be ground "straight up." If the ICL is ''less'' than the LSA, it is said to be ground "advanced". If ICL is more than the LSA, the cam is said to be ground "retarded". It is much more common to see a cam ground advanced or straight up than retarded.  
 
Aftermarket timing set gears often have provisions for altering the cam timing by advancing or retarding the cam position in relationship to the crankshaft position. If the cam card shows the LSA is the same as ICL, the cam is said to be ground "straight up." If the ICL is ''less'' than the LSA, it is said to be ground "advanced". If ICL is more than the LSA, the cam is said to be ground "retarded". It is much more common to see a cam ground advanced or straight up than retarded.  
Line 105: Line 118:
  
 
===Phasing the camshaft===
 
===Phasing the camshaft===
While is is true that you cannot change the lobes of a camshaft after it is ground (unless you weld and re-grind the lobes), you can alter the characteristics of the camshaft in your motor by installing it in either a retarded or advanced position relative to the crankshaft rotation. For instance, the manufacturer recommends the camshaft to be installed straight up, neither advanced or retarded from the as-manufactured design. However, you have determined that you are making too much horsepower down low and can't hook the tires up. You want to trade off a little of the lower end power for some higher end power. In this case, you might install the camshaft slightly retarded. Although all four events (intake valve opening, intake valve closing, exhaust valve opening, exhaust valve closing) will be affected by changing the camshaft phasing, the most important one will be the intake closing point. If you retard the camshaft, you will be closing the intake later, thus bleeding off some of the cylinder pressure and resulting in less low end power. Vice versa if you advance the camshaft. More bottom end, less top end.
+
While is is true that you cannot change the lobes of a camshaft after it is ground (unless you weld and re-grind the lobes), you '''''can''''' alter the characteristics of the camshaft in your motor by installing it in either a retarded or advanced position relative to the crankshaft. For instance, if you have determined that you are making too much horsepower down low and can't hook the tires up, you ''might'' want to trade off a little of the lower end power for some higher end power. In this case, you would install the camshaft slightly retarded (although harnessing the power would be the preferred thing to do- a 0.10 second better 60 foot time equates to about a 0.15 second reduction in 1/4 mile ET).  
 +
 
 +
Although all four events (intake valve opening, intake valve closing, exhaust valve opening, exhaust valve closing) will be affected by changing the camshaft phasing, the most important one will be the intake closing point. If you retard the camshaft, you will be closing the intake later, thus bleeding off some of the cylinder pressure and resulting in less low end power. Vice versa if you advance the camshaft. More bottom end, less top end. A rough estimate is a 4 degree change in cam phasing will change the cranking pressure by 5 psi (advancing increases pressure, retarding decreases pressure). To put that into perspective, a rough estimate says a one point change in static compression ratio (as in going from 9:1 to 10:1, or vice versa) changes the cranking pressure by 20-25 psi.  
  
 
Intake centerline can be altered either by the crankshaft grind or the use of a camshaft sprocket that can alter if the cam is installed advanced or retarded. A later ICL (retarded cam timing) will tend to move the power curve upwards, due to closing the intake valve later. With the faster engine speeds, the intake valve can stay open later without the risk of pushing intake gasses back into the intake runners.  An earlier ICL (advanced cam timing) will tend to increase low end torque because at low speeds, closing the intake valve sooner will trap more intake air at lower RPM.
 
Intake centerline can be altered either by the crankshaft grind or the use of a camshaft sprocket that can alter if the cam is installed advanced or retarded. A later ICL (retarded cam timing) will tend to move the power curve upwards, due to closing the intake valve later. With the faster engine speeds, the intake valve can stay open later without the risk of pushing intake gasses back into the intake runners.  An earlier ICL (advanced cam timing) will tend to increase low end torque because at low speeds, closing the intake valve sooner will trap more intake air at lower RPM.
  
Altering the cam timing by advancing or retarding the ICL can fine tune where the power comes on in the RPM band. Altering ICL should be left to those in the know, and most off-the-shelf cams have been designed by cam companies who know what they're doing. Generally speaking a change of more than 4 degrees either way is a good indication that a beter cam grind could be chosen.
+
Altering the cam timing by advancing or retarding the ICL can fine tune where the power comes on in the RPM band. Altering ICL should be left to those in the know, and most off-the-shelf cams have been designed by cam companies who know what they're doing. Generally speaking a change of more than 4 degrees either way is a good indication that a better cam grind could be chosen.
  
 
There is little point in changing the cam phasing arbitrarily. Unless the camshaft is first degreed, so the exact specs are known, changing the cam position relative to the crankshaft is a total shot in the dark, and could just as easily do nothing or even cause the engine to perform worse than if nothing was done. So, before changing the cam phasing, always degree the cam. Degreeing the cam will also show if there were any errors made during the manufacturing of the cam or other valve train components.
 
There is little point in changing the cam phasing arbitrarily. Unless the camshaft is first degreed, so the exact specs are known, changing the cam position relative to the crankshaft is a total shot in the dark, and could just as easily do nothing or even cause the engine to perform worse than if nothing was done. So, before changing the cam phasing, always degree the cam. Degreeing the cam will also show if there were any errors made during the manufacturing of the cam or other valve train components.
 +
;Note<nowiki>:</nowiki> Also see [http://www.crankshaftcoalition.com/wiki/Camshaft_install_tips_and_tricks#Adjusting_the_cam_timing_or_.22phasing.22 Adjusting the cam timing, or "phasing"]
  
 
==How the cam specs affect engine output==
 
==How the cam specs affect engine output==
Line 122: Line 138:
  
 
==Solid vs. hydraulic camshaft==
 
==Solid vs. hydraulic camshaft==
 +
 +
==Flat tappet vs. roller==
 
[[File:Roller L ft R.jpg|thumb|400px|left|Roller cam, left; flat tappet cam, right]]
 
[[File:Roller L ft R.jpg|thumb|400px|left|Roller cam, left; flat tappet cam, right]]
Telling one from the other visually is relatively easy. The roller cam will have much more rounded lobes, like the big end of an egg. A flat tappet cam will be much more pointed, similar to the small end of an egg.
+
Telling one from the other visually is relatively easy. The roller cam will have much more rounded lobes, like the big end of an egg. A flat tappet cam will be much more pointed, similar to the small end of an egg. Above is a hydraulic roller cam, the rounded lobes are readily appearant compared to the flat tappet cam to the right of it. More at [[Identifying camshafts]].
 
+
Above is a hydraulic roller cam, the rounded lobes are readily appearant compared to the flat tappet cam to the right of it.
+
  
 
Often roller cams will be made of steel and will be shiny instead of a flat black color of a flat tappet cam caused by the wear treatment it is given.
 
Often roller cams will be made of steel and will be shiny instead of a flat black color of a flat tappet cam caused by the wear treatment it is given.
Line 132: Line 148:
 
{{Warning}} Roller cams cannot use flat tappet lifters, and vice versa. Besides the possible mechanical interference between a flat tappet and a roller cam lobe, the timing events will be skewed much to badly for this to work. A roller lifter on a flat tappet lobe would have very little duration, a flat tappet on a roller lobe would have way too much duration, even if it could work without mechanical interference.
 
{{Warning}} Roller cams cannot use flat tappet lifters, and vice versa. Besides the possible mechanical interference between a flat tappet and a roller cam lobe, the timing events will be skewed much to badly for this to work. A roller lifter on a flat tappet lobe would have very little duration, a flat tappet on a roller lobe would have way too much duration, even if it could work without mechanical interference.
  
[[File:Ft vs roller.jpg]] <br style="clear:both"/>
+
[[File:Ft vs roller.jpg]]  
 +
 
 +
[[File:Crower hippo.jpg|thumb|450px||Crower HIPPO (Hi Pressure Pin Oiler) lifter]] [[File:Comp enduro-x.jpg|thumb|450px|left|Endure-X roller lifter]]<br style="clear:both"/>  
 +
 
 +
Comp Cams Endure-X roller lifter is designed specifically for street and marine use. The groove directs pressurized oil to the lobes and roller bearings to keep it alive at low rpm, because it is at low RPM that the roller lifter suffers from a lack of lubrication.
  
 
==Things that can "frag" a camshaft and lifters==
 
==Things that can "frag" a camshaft and lifters==
 
'''See:''' [[Camshaft install tips and tricks]]
 
'''See:''' [[Camshaft install tips and tricks]]
  
==Custom cam==
+
==Custom cams==
 
Choosing a cam is often something that seems shrouded in mystery. The manufacturers have a hundred years of technology to draw from and millions of dollars and man-hours expended on the research, development and testing of camshafts. They have used that experience to come up with thousands of lobe profiles and grinds that attempt to cover the whole broad spectrum of engines and applications. It's possible that an off-the-shelf grind might be perfectly fine, but it can't hurt for you to look into a custom designed/ground camshaft if a particular combination falls between what's readily available. Most all the cam companies will set you up with a custom ground cam for a fee. And most companies have tech lines and web sites to help you pick the right grind. Take the manufacturer's expertise and recommendations into account when deciding on a cam.
 
Choosing a cam is often something that seems shrouded in mystery. The manufacturers have a hundred years of technology to draw from and millions of dollars and man-hours expended on the research, development and testing of camshafts. They have used that experience to come up with thousands of lobe profiles and grinds that attempt to cover the whole broad spectrum of engines and applications. It's possible that an off-the-shelf grind might be perfectly fine, but it can't hurt for you to look into a custom designed/ground camshaft if a particular combination falls between what's readily available. Most all the cam companies will set you up with a custom ground cam for a fee. And most companies have tech lines and web sites to help you pick the right grind. Take the manufacturer's expertise and recommendations into account when deciding on a cam.
 +
 +
 +
===Another View===
 +
This is no longer true.  There happens to be a mathematical equation that you can use to calculate exact values for valve seat durations, net valve lift, rate of lift and lobe centerlines.  It has been around for years, and was written by Dick Jones, used by Mike Jones at Jones Cams, and written into an easy to use and inexpensive camshaft requirement software.  It gives you the exact values for valve seat duration, durations @ .014, .016, .018, .020, .050, .100, .200, .300, .400, net valve lift, cam lobe lift, lift @ TDC, lobe centerlines and profile footprint.  It takes 3 to 4 minutes and has been proven to be accurate over the past 30 years.  There is nothing as accurate.  Controlled Induction camshaft requirement software guarantees it.
  
 
==Simulation software==
 
==Simulation software==
Line 147: Line 171:
  
 
==Resources==
 
==Resources==
;Crankshaft Coalition wiki articles
+
*[http://catalog.elginind.com/app/engine_tech.asp?category=Camshaft+Range+Guide Camshaft Range Guide] from Elgin
 +
*[[Media:Cover front only - cam-selection13-17.pdf|Tips on choosing the right cam]] from Crane Cams
 +
 
 +
===Compression ratio calculators===
 +
*[http://www.wheelspin.net/calc/calc2.html Static compression ratio]
 +
*[http://www.wallaceracing.com/dynamic-cr.php Wallace Racing DCR calculator]
 +
*[http://www.empirenet.com/pkelley2/DynamicCR.html Kelly DCR calculator]
 +
*[http://www.uempistons.com/calc.php?action=comp2 KB/Silvolite DCR calculator]
 +
*[http://www.rbracing-rsr.com/comprAdvHD.htm RSR DCR calculator]
 +
{{Note1}} Some dynamic compression rtatio calculators (like KBs) ask for an additional 15 degrees of duration be added to the IVC @ 0.050" lift point figure. This works OK on older, slower ramped cam lobes, but the faster lobe profiles may need to have 25 degrees or more added to be accurate.
 +
 
 +
{{Note1}}If the intake valve closing (IVC) point isn't known, it can be calculated:
 +
# Divide the intake duration by 2
 +
# Add the results to the lobe separation angle (LSA)
 +
# Subtract any ground-in advance
 +
# Subtract 180
 +
This result does not need to have any amount added to the IVC point, like the KB calculator calls for.
 +
 
 +
===Dyno simulator===
 +
*[http://www.compcams.com/camquest/default.asp Comp Cams CamQuest]
 +
 
 +
===Crankshaft Coalition wiki articles===
 
*[[Valve train points to check]]
 
*[[Valve train points to check]]
 +
*[[Camshaft install tips and tricks]]
 
*[[Cam and compression ratio compatibility]]
 
*[[Cam and compression ratio compatibility]]
 
*[[Adjusting hydraulic lifters]]
 
*[[Adjusting hydraulic lifters]]

Latest revision as of 09:47, 24 May 2020

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox