Determining top dead center
From Crankshaft Coalition Wiki
(→Resources) |
(→Rebuilt dampers) |
||
Line 29: | Line 29: | ||
==Rebuilt dampers== | ==Rebuilt dampers== | ||
− | One noted place to buy a rebuilt damper/balancer is [http://www.damperdoctor.com/ Damper Doctor]. They disassemble stock, OEM production dampers, clock the hub to the inertia ring and reassemble the unit with new elastomeric material pressed together under tremendous hydraulic pressure. An 8" damper for a 350 Chevy can be had for a mere $32.95 (ca. 2012) | + | One noted place to buy a rebuilt damper/balancer is [http://www.damperdoctor.com/ Damper Doctor]. They disassemble stock, OEM production dampers, clock the hub to the inertia ring and reassemble the unit with new elastomeric material pressed together under tremendous hydraulic pressure. An 8" damper for a 350 Chevy can be had for a mere $32.95 (ca. 2012). |
The option is a used damper/balancer that may be clocked worse than the one you have or an aftermarket damper/balancer that will cost more money and may not have been correctly machined on the inner hub diameter. Some of these offshore (Chinese) dampers being sold are bored either oversize or undersize for the production crank snout diameter. The damper/balancer hub MUST BE A SNUG PRESS-FIT on the crank in order to properly transfer harmonics from the crankshaft to the damper/balancer hub and on to the inertia ring, where harmonics are dissipated. | The option is a used damper/balancer that may be clocked worse than the one you have or an aftermarket damper/balancer that will cost more money and may not have been correctly machined on the inner hub diameter. Some of these offshore (Chinese) dampers being sold are bored either oversize or undersize for the production crank snout diameter. The damper/balancer hub MUST BE A SNUG PRESS-FIT on the crank in order to properly transfer harmonics from the crankshaft to the damper/balancer hub and on to the inertia ring, where harmonics are dissipated. | ||
Line 184: | Line 184: | ||
*Distributor Vacuum Advance Control units | *Distributor Vacuum Advance Control units | ||
− | Specs and facts for GM Distributors | + | *Specs and facts for GM Distributors |
*by Lars Grimsrud | *by Lars Grimsrud | ||
− | SVE Automotive Restoration | + | *SVE Automotive Restoration |
− | Musclecar, Collector & Exotic Auto Repair & Restoration | + | *Musclecar, Collector & Exotic Auto Repair & Restoration |
− | Broomfield, CO Rev. B 8-19-02 | + | *Broomfield, CO Rev. B 8-19-02 |
− | *I’ve been seeing a lot of discussion and questions regarding distributor vacuum advance control units; what do they do, which ones are best, what was used on what, etc., etc. To clarify some of this, I thought I’d summarize a few facts and definitions, and provide a complete part number and specification listing for all vacuum advance control units used by Chevrolet on the points-style distributors. I’m also providing a listing of the specs for all other GM (non-Chevrolet) control units, but without the specific application listed for each (it would take me a bit too much time to research each part number by application across each of the GM Motor Divisions – it took me long enough to compile just the Chevy stuff…!). This latest revision to this paper also includes the HEI listings (the HEI distributors use a longer control unit, so the non-HEI and HEI vacuum advance control units CANNOT be interchanged). | + | *I’ve been seeing a lot of discussion and questions regarding distributor vacuum advance control units; what do they do, which ones are best, *what was used on what, etc., etc. To clarify some of this, I thought I’d summarize a few facts and definitions, and provide a complete part *number and specification listing for all vacuum advance control units used by Chevrolet on the points-style distributors. I’m also providing *a listing of the specs for all other GM (non-Chevrolet) control units, but without the specific application listed for each (it would take *me a bit too much time to research each part number by application across each of the GM Motor Divisions – it took me long enough to compile *just the Chevy stuff…!). This latest revision to this paper also includes the HEI listings (the HEI distributors use a longer control unit, *so the non-HEI and HEI vacuum advance control units CANNOT be interchanged). |
− | *As always, I’m going to include the disclaimer that many of these are my own comments and opinions based on my personal tuning experience. Others may have differing opinions & tuning techniques from those presented here. I have made every attempt to present factual, technically accurate data wherever possible. If you find factual errors in this information, please let me know so I can correct it. | + | *As always, I’m going to include the disclaimer that many of these are my own comments and opinions based on my personal tuning experience. *Others may have differing opinions & tuning techniques from those presented here. I have made every attempt to present factual, technically *accurate data wherever possible. If you find factual errors in this information, please let me know so I can correct it. |
*Background | *Background | ||
− | The vacuum advance control unit on the distributor is intended to advance the ignition timing above and beyond the limits of the mechanical advance (mechanical advance consists of the initial timing plus the centrifugal advance that the distributor adds as rpm comes up) under light to medium throttle settings. When the load on the engine is light or moderate, the timing can be advanced to improve fuel economy and throttle response. Once the engine load increases, this “over-advance” condition must be eliminated to produce peak power and to eliminate the possibility of detonation (“engine knock”). A control unit that responds to engine vacuum performs this job remarkably well. | + | *The vacuum advance control unit on the distributor is intended to advance the ignition timing above and beyond the limits of the mechanical *advance (mechanical advance consists of the initial timing plus the centrifugal advance that the distributor adds as rpm comes up) under *light to medium throttle settings. When the load on the engine is light or moderate, the timing can be advanced to improve fuel economy and *throttle response. Once the engine load increases, this “over-advance” condition must be eliminated to produce peak power and to eliminate *the possibility of detonation (“engine knock”). A control unit that responds to engine vacuum performs this job remarkably well. |
− | *Most GM V8 engines (not including “fast-burn” style heads), and specifically Chevys, will produce peak torque and power at wide open throttle with a total timing advance of 36 degrees (some will take 38). Also, a GM V8 engine, under light load and steady-state cruise, will accept a maximum timing advance of about 52 degrees. Some will take up to 54 degrees advance under these conditions. Once you advance the timing beyond this, the engine/car will start to “chug” or “jerk” at cruise due to the over-advanced timing condition. Anything less than 52 degrees produces less than optimum fuel economy at cruise speed. | + | *Most GM V8 engines (not including “fast-burn” style heads), and specifically Chevys, will produce peak torque and power at wide open *throttle with a total timing advance of 36 degrees (some will take 38). Also, a GM V8 engine, under light load and steady-state cruise, will *accept a maximum timing advance of about 52 degrees. Some will take up to 54 degrees advance under these conditions. Once you advance the *timing beyond this, the engine/car will start to “chug” or “jerk” at cruise due to the over-advanced timing condition. Anything less than 52 *degrees produces less than optimum fuel economy at cruise speed. |
− | *The additional timing produced by the vacuum advance control unit must be tailored and matched to the engine and the distributor’s mechanical advance curve. The following considerations must be made when selecting a vacuum advance spec: | + | *The additional timing produced by the vacuum advance control unit must be tailored and matched to the engine and the distributor’s *mechanical advance curve. The following considerations must be made when selecting a vacuum advance spec: |
− | *How much engine vacuum is produced at cruise? If max vacuum at cruise, on a car with a radical cam, is only 15 inches Hg, a vacuum advance control unit that needs 18 inches to peg out would be a poor selection. | + | *How much engine vacuum is produced at cruise? If max vacuum at cruise, on a car with a radical cam, is only 15 inches Hg, a vacuum advance *control unit that needs 18 inches to peg out would be a poor selection. |
− | *How much centrifugal advance (“total timing”) is in effect at cruise rpm? If the distributor has very stiff centrifugal advance springs in it that allow maximum timing to only come in near red-line rpm, the vacuum advance control unit can be allowed to pull in more advance without the risk of exceeding the 52-degree maximum limit. If the engine has an advance curve that allows a full 36-degree mechanical advance at cruise rpm, the vacuum advance unit can only be allowed to pull in 16 more degrees of advance. | + | *How much centrifugal advance (“total timing”) is in effect at cruise rpm? If the distributor has very stiff centrifugal advance springs in *it that allow maximum timing to only come in near red-line rpm, the vacuum advance control unit can be allowed to pull in more advance *without the risk of exceeding the 52-degree maximum limit. If the engine has an advance curve that allows a full 36-degree mechanical *advance at cruise rpm, the vacuum advance unit can only be allowed to pull in 16 more degrees of advance. |
− | *Are you using “ported” or “manifold” vacuum to the distributor? “Ported” vacuum allows little or no vacuum to the distributor at idle. “Manifold” vacuum allows actual manifold vacuum to the distributor at all times. | + | *Are you using “ported” or “manifold” vacuum to the distributor? “Ported” vacuum allows little or no vacuum to the distributor at idle. *“Manifold” vacuum allows actual manifold vacuum to the distributor at all times. |
− | *Does your engine require additional timing advance at idle in order to idle properly? Radical cams will often require over 16 degrees of timing advance at idle in order to produce acceptable idle characteristics. If all of this initial advance is created by advancing the mechanical timing, the total mechanical advance may exceed the 36-degree limit by a significant margin. An appropriately selected vacuum advance unit, plugged into manifold vacuum, can provide the needed extra timing at idle to allow a fair idle, while maintaining maximum mechanical timing at 36. A tuning note on this: If you choose to run straight manifold vacuum to your vacuum advance in order to gain the additional timing advance at idle, you must select a vacuum advance control unit that pulls in all of the advance at a vacuum level 2” below (numerically less than) the manifold vacuum present at idle. If the vacuum advance control unit is not fully pulled in at idle, it will be somewhere in its mid-range, and it will fluctuate and vary the timing while the engine is idling. This will cause erratic timing with associated unstable idle rpm. A second tuning note on this: Advancing the timing at idle can assist in lowering engine temperatures. If you have an overheating problem at idle, and you have verified proper operation of your cooling system components, you can try running manifold vacuum to an appropriately selected vacuum advance unit as noted above. This will lower engine temps, but it will also increase hydrocarbon emissions on emission-controlled vehicles. | + | *Does your engine require additional timing advance at idle in order to idle properly? Radical cams will often require over 16 degrees of *timing advance at idle in order to produce acceptable idle characteristics. If all of this initial advance is created by advancing the *mechanical timing, the total mechanical advance may exceed the 36-degree limit by a significant margin. An appropriately selected vacuum *advance unit, plugged into manifold vacuum, can provide the needed extra timing at idle to allow a fair idle, while maintaining maximum *mechanical timing at 36. A tuning note on this: If you choose to run straight manifold vacuum to your vacuum advance in order to gain the *additional timing advance at idle, you must select a vacuum advance control unit that pulls in all of the advance at a vacuum level 2” below *(numerically less than) the manifold vacuum present at idle. If the vacuum advance control unit is not fully pulled in at idle, it will be *somewhere in its mid-range, and it will fluctuate and vary the timing while the engine is idling. This will cause erratic timing with *associated unstable idle rpm. A second tuning note on this: Advancing the timing at idle can assist in lowering engine temperatures. If you *have an overheating problem at idle, and you have verified proper operation of your cooling system components, you can try running manifold *vacuum to an appropriately selected vacuum advance unit as noted above. This will lower engine temps, but it will also increase hydrocarbon *emissions on emission-controlled vehicles. |
− | *Thus, we see that there are many variables in the selection of an appropriate control unit. Yet, we should keep in mind that the control unit is somewhat of a “finesse” or “final tuning” aid to obtain a final, refined state of tune; we use it to just “tweak” the car a little bit to provide that last little bit of optimization for drivability and economy. The vacuum advance unit is not used for primary tuning, nor does it have an effect on power or performance at wide open throttle. | + | *Thus, we see that there are many variables in the selection of an appropriate control unit. Yet, we should keep in mind that the control *unit is somewhat of a “finesse” or “final tuning” aid to obtain a final, refined state of tune; we use it to just “tweak” the car a little *bit to provide that last little bit of optimization for drivability and economy. The vacuum advance unit is not used for primary tuning, nor *does it have an effect on power or performance at wide open throttle. |
− | *With these general (and a little bit vague, I know…) concepts in mind, let’s review a few concepts and terms. Then it’s on to the master listing of specs and parts…..: | + | *With these general (and a little bit vague, I know…) concepts in mind, let’s review a few concepts and terms. Then it’s on to the master *listing of specs and parts…..: |
*Part Number | *Part Number | ||
− | There are many different sources for these control units. Borg Warner, Echlin, Wells, and others all sell them in their own boxes and with their own part numbers. Actually, there are very few manufacturers of the actual units: Dana Engine Controls in Connecticut manufactures the units for all three of the brands just mentioned, so it doesn’t make much difference who you buy from: They’re made by the same manufacturer. The part numbers I have listed here are the NAPA/Echlin part numbers, simply because they are available in any part of the country. | + | *There are many different sources for these control units. Borg Warner, Echlin, Wells, and others all sell them in their own boxes and with *their own part numbers. Actually, there are very few manufacturers of the actual units: Dana Engine Controls in Connecticut manufactures the *units for all three of the brands just mentioned, so it doesn’t make much difference who you buy from: They’re made by the same *manufacturer. The part numbers I have listed here are the NAPA/Echlin part numbers, simply because they are available in any part of the *country. |
*ID# | *ID# | ||
− | Every vacuum advance control unit built by Dana, and sold under virtually any brand name (including GM), has a stamped ID number right on top of the mounting plate extension. This ID, cross referenced below, will give you all specifications for the unit. So now, when you’re shopping in a junkyard, you’ll be able to quickly identify the “good” vs. the “bad” control units. | + | *Every vacuum advance control unit built by Dana, and sold under virtually any brand name (including GM), has a stamped ID number right on *top of the mounting plate extension. This ID, cross referenced below, will give you all specifications for the unit. So now, when you’re *shopping in a junkyard, you’ll be able to quickly identify the “good” vs. the “bad” control units. |
*Starts @ “Hg | *Starts @ “Hg | ||
− | Vacuum is measured in “inches of Mercury.” Mercury has the chemical symbol “Hg.” Thus, manifold vacuum is measured and referred to as “Hg. The “Start” spec for the control unit is a range of the minimum vacuum required to get the control unit to just barely start moving. When selecting this specification, consideration should be made to the amount of vacuum that a given engine produces, and what the load is on the engine at this specification. For example, an engine with a very radical cam may be under very light load at 7 inches Hg, and can tolerate a little vacuum advance at this load level. Your mom’s Caprice, on the other hand, has such a mild cam that you don’t want the vacuum to start coming in until 9 – 10 inches Hg. For most street driven vehicle performance applications, starting the vacuum advance at about 8” Hg produces good results. | + | *Vacuum is measured in “inches of Mercury.” Mercury has the chemical symbol “Hg.” Thus, manifold vacuum is measured and referred to as “Hg. *The “Start” spec for the control unit is a range of the minimum vacuum required to get the control unit to just barely start moving. When *selecting this specification, consideration should be made to the amount of vacuum that a given engine produces, and what the load is on the *engine at this specification. For example, an engine with a very radical cam may be under very light load at 7 inches Hg, and can tolerate a *little vacuum advance at this load level. Your mom’s Caprice, on the other hand, has such a mild cam that you don’t want the vacuum to start *coming in until 9 – 10 inches Hg. For most street driven vehicle performance applications, starting the vacuum advance at about 8” Hg *produces good results. |
*Max Advance | *Max Advance | ||
− | Since the vacuum advance control unit is a part of the distributor, the number of degrees of vacuum advance is specified in DISTRIBUTOR degrees – NOT crankshaft degrees. When talking about these control units, it is important that you know whether the person you’re talking to is referring to the distributor degrees, or if he’s talking crankshaft degrees. All of the listings shown in the following chart, and in any shop manual & technical spec sheet, will refer to distributor degrees of vacuum advance. You must DOUBLE this number to obtain crankshaft degrees (which is what you “see” with your timing light). Thus, a vacuum advance control unit with 8 degrees of maximum advance produces 16 degrees of ignition advance in relationship to the crankshaft. When selecting a unit for max advance spec, the total centrifugal timing at cruise must be considered. Thus, a car set up to produce 36 degrees of total mechanical advance at 2500 rpm needs a vacuum advance control unit producing 16 degrees of crankshaft advance. This would be an 8-degree vacuum advance control unit. | + | *Since the vacuum advance control unit is a part of the distributor, the number of degrees of vacuum advance is specified in DISTRIBUTOR *degrees – NOT crankshaft degrees. When talking about these control units, it is important that you know whether the person you’re talking to *is referring to the distributor degrees, or if he’s talking crankshaft degrees. All of the listings shown in the following chart, and in any *shop manual & technical spec sheet, will refer to distributor degrees of vacuum advance. You must DOUBLE this number to obtain crankshaft *degrees (which is what you “see” with your timing light). Thus, a vacuum advance control unit with 8 degrees of maximum advance produces 16 *degrees of ignition advance in relationship to the crankshaft. When selecting a unit for max advance spec, the total centrifugal timing at *cruise must be considered. Thus, a car set up to produce 36 degrees of total mechanical advance at 2500 rpm needs a vacuum advance control *unit producing 16 degrees of crankshaft advance. This would be an 8-degree vacuum advance control unit. |
*Max Advance @ “Hg | *Max Advance @ “Hg | ||
− | This is the range of manifold vacuum at which the maximum vacuum advance is pegged out. In selecting this specification, you must consider the vacuum produced at cruise speed and light throttle application. If your engine never produces 20” Hg, you better not select a control unit requiring 21” Hg to work. | + | *This is the range of manifold vacuum at which the maximum vacuum advance is pegged out. In selecting this specification, you must consider *the vacuum produced at cruise speed and light throttle application. If your engine never produces 20” Hg, you better not select a control *unit requiring 21” Hg to work. |