AMC V-8s

From Crankshaft Coalition Wiki
Jump to: navigation, search
(Automatic transmissions)
(Overview)
 
Line 1: Line 1:
{{Youcanedit}}
+
 
 
[[File:Amc v8.jpg|right|420px]]
 
[[File:Amc v8.jpg|right|420px]]
 
<br><br><br>
 
<br><br><br>
Line 5: Line 5:
 
The AMC V8 has a [http://www.crankshaftcoalition.com/wiki/Talk:AMC_V-8s storied] history. Read about the pros and cons of both AMC V8 engines. This article will touch on the highlights.  
 
The AMC V8 has a [http://www.crankshaftcoalition.com/wiki/Talk:AMC_V-8s storied] history. Read about the pros and cons of both AMC V8 engines. This article will touch on the highlights.  
  
{{Note1}} Portions of the following text came from [http://www.wps.com/AMC/Rambler-327/The%20New%20American%20Motors%20V-8%20Engine%20%28SAE%20Paper%20details%29.htm The New American Motors V-8 Engine] by John F. Adamson, Carl E. Burke and David B. Potter of the American Motors Corp. This paper was first presented at the SAE National Passenger-Car, Body and Materials Meeting, Detroit, Michigan, March 7, 1956.  
+
Portions of the following text came from [http://www.wps.com/AMC/Rambler-327/The%20New%20American%20Motors%20V-8%20Engine%20%28SAE%20Paper%20details%29.htm The New American Motors V-8 Engine] by John F. Adamson, Carl E. Burke and David B. Potter of the American Motors Corp. This paper was first presented at the SAE National Passenger-Car, Body and Materials Meeting, Detroit, Michigan, March 7, 1956.
  
 
==In the beginning==
 
==In the beginning==
Line 39: Line 39:
 
All 250 engines were made having solid lifters and adjustable rocker arms. All 287 and most 327 versions came with self adjusting hydraulic lifters. These engines were also used by Grey Marine for boats in the late '50s through the mid '60s. All the marine engines used solid lifters regardless of size. The easily removed 'two wingnut' style valve covers imply original solid lifter design.
 
All 250 engines were made having solid lifters and adjustable rocker arms. All 287 and most 327 versions came with self adjusting hydraulic lifters. These engines were also used by Grey Marine for boats in the late '50s through the mid '60s. All the marine engines used solid lifters regardless of size. The easily removed 'two wingnut' style valve covers imply original solid lifter design.
  
AM's '56-'67 Rambler V8 has only recently been re-labeled 'Gen 1' by newer AMC enthusiasts. This labeling was first used by AMC writer Frank Swygert (aka editor/forum member 'farna') in an effort to describe the engine chronologically. Technically the labeling is correct; this is the first generation of AMC V-8s, AMC having been formed in May of 1954 and V-8 engine development starting in 1955. The 1966-'69 second generation models and 1970-'91 third generation models are very similar (to each other, only bore centers are in common with the Gen-1), but having a different block and head casting led to the labeling of Gen-2 and Gen-3. "Series" could have been used instead of "Generation", but "Generation" (shortened to "Gen") seemed to be the most correct description. Previously the first generation AMC V-8 had been (and still is) referred to as either the "Nash V-8" or "Rambler V-8". It was used in both Nash and Rambler branded, as well as AMC branded, cars ("Rambler" was dropped from the 1965 Marlin and 1966 Ambassador, those being branded as AMC models). Technically it was built by the American Motors Corporation, not Nash or Rambler.
+
AM's first V8 was called 'Rambler V8' in all the old automotive literature. The alpha-numeric 'Gen-1,2,3' names were never used in any American Motors publication.  
  
 
'Gen-1', 'Gen-2', etc. labeling ideas were first used by Chevrolet small block V-8 enthusiasts to distinguish the differences among that group of very similar engines. This has apparently led many to believe the terms were "borrowed" from the GM engine family or that a GM enthusiast created the labels. There was a small effort to distinguish between GM and AMC labels: GM models are typically labeled with all capitals (GEN-1, GEN-2, etc., sometimes with no dash), whereas Frank used a single capital (Gen-1, and always a dash). The label was used because it is technically correct and fits. GM's labeling wasn't even considered until others pointed out the similarities, and made the assumption that the labeling was "borrowed".
 
'Gen-1', 'Gen-2', etc. labeling ideas were first used by Chevrolet small block V-8 enthusiasts to distinguish the differences among that group of very similar engines. This has apparently led many to believe the terms were "borrowed" from the GM engine family or that a GM enthusiast created the labels. There was a small effort to distinguish between GM and AMC labels: GM models are typically labeled with all capitals (GEN-1, GEN-2, etc., sometimes with no dash), whereas Frank used a single capital (Gen-1, and always a dash). The label was used because it is technically correct and fits. GM's labeling wasn't even considered until others pointed out the similarities, and made the assumption that the labeling was "borrowed".
Line 138: Line 138:
 
==Transmissions==  
 
==Transmissions==  
 
===Automatic transmissions===
 
===Automatic transmissions===
AMC used GM hydramatic transmissions in 1957 switching in the '58 model year to a Borg-Warner automatic transmission behind their Gen-1 engine. Only manual transmissions were used in the 1956 Specials. AMC called the GM automatic "Flashaway" and the Borg-Warner transmission "Flash-O-Matic". It's a three speed cast iron case Borg-Warner Model 8 with a vacuum modulator valve. The column shift quadrant will read P-R-N-2-D-1-L. The 1 and 2 are small.  
+
AMC used GM hydramatic transmissions in 1957 switching in the '58 model year to "Flash-O-Matic" units manufactured primarily by Warner Gear Division of Borg Warner. Only manual transmissions were used in the 1956 Specials. AMC called the GM automatic "Flashaway" and the Borg-Warner transmission "Flash-O-Matic". It's a three speed cast iron case Borg-Warner Model 8 with a vacuum modulator valve. The column shift quadrant will read P-R-N-2-D-1-L. The 1 and 2 are small.  
  
 
A dash mounted push-button shifter mechanism was used in the Rambler 6 and Ambassador from 1958-'62. The American models used a column shifter. The push-buttons were marked N-R-D2-D1-L, with a Park lever under the dash. P-R-N are self explanatory. In D2 the transmission will act like a two speed. It starts in second gear and shifts to third, downshifts only to second. This was mainly used for slippery conditions such as driving in snow or ice. Using second gear prevented excessive wheel spin. Many people think they have a two speed transmission because this is the third forward position on the transmission. Slip it down to D1, however, and you'll find the missing gear! In D1 the trans shifts from first through third and back down. L (low) is first gear only, no up shifts. The trans can safely be shifted into Low at any speed. As a safety feature the trans will not shift down until it has reached a safe speed to do so. If in third it will got to second, then down to first once a safe speed is reached. It will not shift back up until shifted into D1 or D2. To manually shift through the gears start in L, shift up to D1 then as soon as the trans shifts, go back to L. It won't downshift if accelerating. When ready for third gear go back to D1.  
 
A dash mounted push-button shifter mechanism was used in the Rambler 6 and Ambassador from 1958-'62. The American models used a column shifter. The push-buttons were marked N-R-D2-D1-L, with a Park lever under the dash. P-R-N are self explanatory. In D2 the transmission will act like a two speed. It starts in second gear and shifts to third, downshifts only to second. This was mainly used for slippery conditions such as driving in snow or ice. Using second gear prevented excessive wheel spin. Many people think they have a two speed transmission because this is the third forward position on the transmission. Slip it down to D1, however, and you'll find the missing gear! In D1 the trans shifts from first through third and back down. L (low) is first gear only, no up shifts. The trans can safely be shifted into Low at any speed. As a safety feature the trans will not shift down until it has reached a safe speed to do so. If in third it will got to second, then down to first once a safe speed is reached. It will not shift back up until shifted into D1 or D2. To manually shift through the gears start in L, shift up to D1 then as soon as the trans shifts, go back to L. It won't downshift if accelerating. When ready for third gear go back to D1.  
Line 144: Line 144:
 
1965-'66 models used a throttle valve cable instead of a vacuum modulator to control internal pressure. This is the M-10, internally similar to the M-8 except for the TV cable and valve body. The cable '''must''' be connected for the transmission to work correctly! Otherwise it will burn up like a cable equipped GM TH700R4 or a Chrysler transmission without the "kick-down" linkage connected. On the '67-'71 "Shift Command" versions, an electric solenoid inside the valve body controls kick-down (passing gear). A switch on the throttle linkage (usually on the engine) is activated at wide open throttle to force a downshift for passing, etc. It will not kick down over a certain speed, usually in the 60-70 mph range.  
 
1965-'66 models used a throttle valve cable instead of a vacuum modulator to control internal pressure. This is the M-10, internally similar to the M-8 except for the TV cable and valve body. The cable '''must''' be connected for the transmission to work correctly! Otherwise it will burn up like a cable equipped GM TH700R4 or a Chrysler transmission without the "kick-down" linkage connected. On the '67-'71 "Shift Command" versions, an electric solenoid inside the valve body controls kick-down (passing gear). A switch on the throttle linkage (usually on the engine) is activated at wide open throttle to force a downshift for passing, etc. It will not kick down over a certain speed, usually in the 60-70 mph range.  
  
These are reasonably heavy duty transmissions. They are equivalent to a Ford-O-Matic or FMX three speed, which were used behind their 352 and 390 cid engines. In fact, they are nearly identical. Borg-Warner, Studebaker, and Ford formed a development team for an auto trans in the early 1950s and introduced one around 1953-'54. Ford contracted to buy 50% of their automatic transmission from Borg-Warner through 1958, and built a factory to build the other 50% on their own. That's why the same trans kit will work with Borg-Warner and several Ford auto transmissions; BUT it '''is not''' a Ford transmission! The Ford transmissions '''should''' bolt to the AMC bellhousing, no one I know has tried since the older Ford transmissions and parts availability is about the same as the Borg-Warner units.
+
These are reasonably heavy duty transmissions. They are equivalent to a Ford-O-Matic or FMX three speed, which were used behind their 352 and 390 cid engines, moreover in smaller V8 Ford 150 thru 1979. Borg-Warner's website history page states they made Ford-O-Matic in 1950. Ford contracted to buy 50% of their automatic transmissions from Borg-Warner through 1958, and built a factory to build the other 50% on their own. That's why the same trans kit will work with Borg-Warner and several Ford auto transmissions; BUT it '''is not''' a Ford transmission! The Ford transmissions '''should''' bolt to the AMC bellhousing, no one I know has tried since the older Ford transmissions and parts availability is about the same as the Borg-Warner units.  
 
+
The only "problem" with these transmissions is finding someone familiar with rebuilding them, and that there are no performance parts. Most good performance torque converter shops can rebuild the stock converter, and should be able to change the stall speed. Some are busy enough with more familiar/popular transmissions that they don't work on odd-balls like this any more. The only other performance mod is to change the line and/or converter pressure valve springs. There are no springs made specifically for this purpose, but some have either stretched or shimmed the stock springs or replaced them with other springs they have found, but this takes some searching and experimenting, so be careful!
+
 
+
Parts are available from several old auto trans sources. [www.nwtparts.com Northwest Transmission], Fatsco (www.fatsco.com), and Dave Edwards (www.autotran.us) are good sources.  
+
  
 
Kaiser Jeeps used a TH400 in the Wagoneer and pickup from 1963-'67. It's the "universal" TH400, which was the Buick Nailhead model. Buick Nailhead engines have a deep flange on the back of the block covering the flexplate/flywheel which require a shallower bellhousing than other GM engines. That shallow bellhousing left room to make an adapter without adding length to the engine/trans, so GM sold it as a "universal" model and continued production a few years after the Nailhead was discontinued. If you get one, make sure you get the 1-1/2" to 2" thick cast iron adapter as well as the flexplate and spacer. The crank will need a pilot bushing to match the flexplate. As stated, a Nailhead TH400 will work if you get just the adapter. Rolls-Royce and Jaguar used the universal TH400, among other smaller makers who didn't need enough units to warrant casting a new case. If using another AMC sourced transmission behind a former Jeep 327 with auto, make sure the thin pilot bushing is removed first. When Kaiser-Jeep became part of American Motors in 1970 (AMC/Jeep) the TH400 bellhousing was switched over to the AMC V8 and 72-06 inline six pattern. AMC phased in the use of the Chrysler Torqueflite for the 1972 model year (both AMC and Jeep vehicles used the Torqueflite with the exception of the Jeep Wagoneer which continued the use of the GM-sourced THM400 until 1979 when it was replaced by the Torqueflite 727 (later the 36RH).
 
Kaiser Jeeps used a TH400 in the Wagoneer and pickup from 1963-'67. It's the "universal" TH400, which was the Buick Nailhead model. Buick Nailhead engines have a deep flange on the back of the block covering the flexplate/flywheel which require a shallower bellhousing than other GM engines. That shallow bellhousing left room to make an adapter without adding length to the engine/trans, so GM sold it as a "universal" model and continued production a few years after the Nailhead was discontinued. If you get one, make sure you get the 1-1/2" to 2" thick cast iron adapter as well as the flexplate and spacer. The crank will need a pilot bushing to match the flexplate. As stated, a Nailhead TH400 will work if you get just the adapter. Rolls-Royce and Jaguar used the universal TH400, among other smaller makers who didn't need enough units to warrant casting a new case. If using another AMC sourced transmission behind a former Jeep 327 with auto, make sure the thin pilot bushing is removed first. When Kaiser-Jeep became part of American Motors in 1970 (AMC/Jeep) the TH400 bellhousing was switched over to the AMC V8 and 72-06 inline six pattern. AMC phased in the use of the Chrysler Torqueflite for the 1972 model year (both AMC and Jeep vehicles used the Torqueflite with the exception of the Jeep Wagoneer which continued the use of the GM-sourced THM400 until 1979 when it was replaced by the Torqueflite 727 (later the 36RH).

Latest revision as of 21:32, 22 November 2023

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox