Lifters

From Crankshaft Coalition Wiki
Jump to: navigation, search
(Flat tappet)
(Lifter reassembly)
 
Line 1: Line 1:
[[File:Hydraulic Lifter.jpg|thumb|200px|left|Generic hydraulic lifter]][[File:Schubeck hydraulic lifter made for zero lashing.jpg|thumb|150px|right|[http://www.schubeckracing.com/flathydraulic.html '''Schubeck hydraulic lifter'''] made to be zero-lashed]] <br><br>
+
[[File:Hydraulic Lifter.jpg|thumb|200px|left|Generic hydraulic lifter (c) 2007 ratwell.com]][[File:Schubeck hydraulic lifter made for zero lashing.jpg|thumb|150px|right|[http://www.schubeckracing.com/flathydraulic.html '''Schubeck hydraulic lifter'''] made to be zero-lashed]] <br><br>
  
 
==Overview==
 
==Overview==
Line 8: Line 8:
  
 
===Flat tappet===
 
===Flat tappet===
Flat tappet lifters are flat on the bottom. They're not perfectly flat, they have a very gradual radius ground onto them to help the lifter to rotate (along with the angle of the cam lobe), and resemble a cylinder of steel with a snap ring on one end holding in a pushrod cup.
+
Flat tappet type lifters are actually not perfectly flat, they have a very gradual radius ground onto them to help the lifter to rotate (along with the angle of the cam lobe). Most flat tappet lifters resemble a cylinder of steel with an internal snap ring on one end holding in a pushrod cup.
  
 
Flat tappet cam/lifter valve trains were the primary form of valve actuation for domestic engines from the early '50s until about the mid-'80s. They were reasonable durable and reasonably reliable, although there were better designs. Not until the EPA mandated a change in the motor oil formulations did they fall out of favor.  
 
Flat tappet cam/lifter valve trains were the primary form of valve actuation for domestic engines from the early '50s until about the mid-'80s. They were reasonable durable and reasonably reliable, although there were better designs. Not until the EPA mandated a change in the motor oil formulations did they fall out of favor.  
Line 111: Line 111:
 
The lifter is the most precisely machined part in the engine. The plunger OD is matched to the lifter body ID; the close tolerances are required to give the correct amount of bleed down. For that reason, there is a chance you might need to go through more than one lifter to find a good match to the old plunger OD. The MAIN thing is that the plunger not be too tight. Slightly loose will still perform OK, although there's a chance there could be some slight tapping at idle. But if the lifter and cam cannot for whatever reason be replaced as a set, this is STILL preferable to putting a new lifter on a used cam.   
 
The lifter is the most precisely machined part in the engine. The plunger OD is matched to the lifter body ID; the close tolerances are required to give the correct amount of bleed down. For that reason, there is a chance you might need to go through more than one lifter to find a good match to the old plunger OD. The MAIN thing is that the plunger not be too tight. Slightly loose will still perform OK, although there's a chance there could be some slight tapping at idle. But if the lifter and cam cannot for whatever reason be replaced as a set, this is STILL preferable to putting a new lifter on a used cam.   
 
<br><br>
 
<br><br>
{{newarticle1}}
+
 
 
[[Category:Engine]]
 
[[Category:Engine]]
[[Category:Adjust valves]]
+
 
 
[[Category:Camshaft]]
 
[[Category:Camshaft]]

Latest revision as of 07:16, 31 December 2023

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox