V6 Chevy 90 degree engines

From Crankshaft Coalition Wiki
Jump to: navigation, search
(Displacements)
(Resources)
 
Line 1: Line 1:
 
==Overview==
 
==Overview==
 
A look at the Chevy V6 90º engines used from 1978-on.
 
A look at the Chevy V6 90º engines used from 1978-on.
 +
 +
==Chevy V6 90º suffix codes==
 +
 +
===229 V6===
 +
;1980 Camaro RPO LC-3
 +
*CRA: MT
 +
*CRC: AT
 +
<br>
 +
;1981 Camaro RPO LC-3
 +
*D7A: AT (export)
 +
*D7B: AT (export)
 +
*DAA: MT
 +
*DAB: AT
 +
*DAC: AT
 +
*DAD: AT
 +
*DAH: MT
 +
*DAJ: AT
 +
*DAK: ?
 +
<br>
 +
 +
;1982 Camaro
 +
 +
 +
===4.3L V6===
 +
;1986
 +
UAB: MT, VIN H, Sierra p-u
 +
<br>
 +
;1988
 +
*PAZ: 150 HP, RPO LB-4, 4sp. AT, Astro van
 +
<br>
 +
 +
**4.3L V6 VIN CODE Z**
 +
 +
1988 S10 S15 & T10 T15
 +
PAN, PBN, PBR, XXC
 +
 +
1989 S10 S15 & T10 T15
 +
THA, THB, THC, THT,THU, THW, XXC
 +
 +
1990 S10 S15 & T10 T15
 +
UTM, UTN, UTP, UUK, UWC, UWD, UWF, UWH, UWJ, UWK, UWL, UWM, UWN XXC
 +
 +
1991 S10 S15 & T10 T15
 +
FLY, FLX, FMK,FMA, FMB, FMC,FMX, UTM, UTN, UTP, UUK, UWC, UWD, UWF,
 +
UWH, UWK, UWM
 +
 +
1992 S10 S15 & T10 T15
 +
XFA, XFB, XFC, XFD, XFN, XFS, XFT, XFU, XFY, XJB, XJC, XJD
 +
 +
1993 S10 S15 & T10 T15
 +
AJF, AJH, AJJ, AJK, AJN, AJP, AJS, AJU, AJW, AJX, AJY
 +
 +
 +
**4.3L V6 VIN Code W**
 +
 +
1992 S10 S15 & T10 T15
 +
XFK, XFW
 +
 +
1993 S10 S15 & T10 T15
 +
AJD, AJL, AJT
 +
 +
 +
**4.3L V6 VIN CODE Z (RPO Z79) Turbo**
 +
 +
1991 S15 (GMC Syclone)
 +
1LD
 +
 +
1992 T15  (GMC Typhoon)
 +
2LD
 +
 +
1993 T15  (GMC Typhoon)
 +
3LD
  
 
==Blocks==
 
==Blocks==
 
The Chevy 90º V6 is formed by the removal of the #3 and #6 cylinders of a SBC. All three V6 engines share the same 4.4" bore spacing and 9.025" deck height of the SBC engine.
 
The Chevy 90º V6 is formed by the removal of the #3 and #6 cylinders of a SBC. All three V6 engines share the same 4.4" bore spacing and 9.025" deck height of the SBC engine.
  
The early engines and 4.3L (without balance shafts) shared the accessory drive used with the SBC including the pulleys, harmonic balancers, and water pumps. Marine applications used a short water pump and a 6.75" harmonic balancer. Like the SBC, two-piece rear seals were used until the end of the 1985 model year; 1986-present are one-piece. 1987 saw the use of roller lifters.  
+
Production 1992 4.3L engines with RPO L35 had modified cylinder blocks where a balance shaft is used. The balance shaft is gear-driven off the front camshaft gear; camshafts for use with balance shaft motors have a longer dowel pin, which cannot be interchanged with non-balance shaft engines. The current engine block in production since 1995 eliminated the front and rear freeze plugs with extra strengthening ribs. The oil pan used was changed from stamped steel to an aluminum alloy casting. The engine block has 10 oil pan bolts, making the early and late oil pans incompatible.
  
Production 1992 4.3L with RPO L35 had modified cylinder blocks where a balance shaft are used. The balance shaft are gear-driven off the front camshaft gear; camshafts for use with balance shaft motors have a longer dowel pin, which cannot be interchanged with non-balance shaft engines. The current engine block in production since 1995 eliminated the front and rear freeze plugs with extra strengthening ribs, whereas the oil pan used was changed from stamped steel to aluminum alloy. The engine block has 10 oil pan bolts, making the early and late oil pans incompatible.
+
==Cylinder Heads==
 +
The cylinder heads used on the 200 and 229 had 58cc combustion chambers using perimeter-bolt valve covers. 1985-'95 4.3L cylinder heads came standard with 64cc combustion chambers, swirl port intake ports and centerbolt valve covers. The 1996-present 4.3L engines use the Vortec head, similar in design to the L31 5.7L V8 head.  
  
 
==Displacements==
 
==Displacements==
 
There were three displacements of the Chevy V6:
 
There were three displacements of the Chevy V6:
*200 cid (3.4L) cid, basically 3/4 of the lowly 267 cid V8. Made 1978–'79.   
+
#200 cid (3.4L), it is basically 3/4 of the 267 cid SBC V8. Made 1978–'79.   
*229 cid (3.8L, not to be confused with the Buick-derived 3.8L 231 cid V6 used through the years), is 3/4 of the not-quite-as-bad 305 SBC V8. Made 1980-'84.
+
#229 cid (3.8L)- not to be confused with the Buick-derived 3.8L 231 cid V6). It is 3/4 of the 305 SBC V8. Made 1980-'84.
*4.3L (262 cid), the best of the bunch by far. This is 3/4 of the SBC 350 and as such, shares some of the parts and dimensions with the 350. Made 1985-present. The 1992 model year saw the use of balance shafts; all 1995-present 4.3s are balance shaft equipped.
+
#4.3L (262 cid) is 3/4 of the SBC 350 and as such, shares some of the parts and dimensions with the 350. Made 1985-2014. The 1992 model year saw the first use of a balance shaft; all 1995-present 4.3L V6 engines are equipped with a balance shaft. The 4.3L V6 got a revised cylinder head in 1996 with specs much like the SBC V8 [[Vortec L31 cylinder head]]. Passenger car usage was limited to B and G-bodies; after 1990 (with the exception of some 1991-'92 fleet Caprice) the 4.3L V6 was used exclusively in truck/van/SUV and marine/industrial use. 
 +
 
 +
The 4.3L V6 has the advantages of far better availability, a larger displacement and larger bore diameter than the 200 cid or 229 cid V6. It also enjoys better aftermarket support. For these reasons, the 4.3L is the preferred Chevrolet V6-90 engine for performance use.
  
 
==Bore and stroke==
 
==Bore and stroke==
Line 23: Line 98:
 
All the Chevy V6 cranks are 3.48" stroke. There are major differences between the 200/229 engines and the 4.3L engine, though.  
 
All the Chevy V6 cranks are 3.48" stroke. There are major differences between the 200/229 engines and the 4.3L engine, though.  
  
Scat makes a cast crank for the 4.3L engine, p/n 9-4.3L-3480-5700. It's for the 1-piece rear main seal engines.
+
Scat used to make a cast crank for the 4.3L engine, p/n 9-4.3L-3480-5700. It was for the 1-piece rear main seal engines.
  
==Firing orders==
+
[[File:Even fire chevv6.jpg|thumb|350px|right|Production 4.3L even fire crank, arrows show split rod journals]][[File:Odd fire Chev v6crank.JPG|thumb|400px|left|Odd fire crank showing common rod journals]]<br style="clear:both"/>
All the engines share the same firing order of 1-6-5-4-3-2. The two smaller engines, the 200 and 229, have what is called a "semi-even fire" sequence which alternates between 132º and 108º. This comes about due to the "slipped disc" crank pins; each pair of rods are offset by 18º. This required the connecting rods to have 0.050" narrower ends to fit onto the available rod journal space.
+
  
The cam and distributors are specific to these two engines and they cannot be interchanged with the 4.3L V6 engine. Distributor bodies used on the V6-90 are identical to the one used for the Chevrolet small-block V8 except for the pickup coil and pole piece assembly. The main difference between the semi-even fire series (200/229) and 4.3L distributors - the 4.3L distributor pickup coil and reluctor wheel has six equal points every 30 degrees. Also, a majority of the distributors used on the 4.3L has a small distributor cap (commonly used with the TBI and CPI motors) with an external coil - the 1985 model year 4.3L used in Chevrolet trucks, vans (including the Astro/Safari) was the only time that the traditional large-cap HEI was used on the RPO LB1 motor. Marine applications used a unique small-capped distributor not interchangable with those used in automobiles.  
+
==Rods==
 +
There are at least 4 different 4.3L rods that have two different weights, so be sure of what is being used if the parts come from different engines or the source is unknown.
 +
 
 +
The 4.3L V6 engine has an even-fire sequence, occurring 120 degrees apart. This is accomplished by having a larger 30º offset on the rod journal pairs. To gain back the strength that the wider offset takes away from the crank, the rod journal diameter is larger than the other V6 engines and also larger than the SBC, at 2.25", which makes them unique among the Chevy V6 and V8 engines. That means the 4.3L rods are not interchangeable with the traditional small block. The smaller 200/229 cid V6 rods aren't interchangeable either due to their narrower big ends.
 +
 
 +
==Firing orders==
 +
All the Chevy V6 90 degree engines share the same firing order of 1-6-5-4-3-2. The two smaller engines, the 200 cid and 229 cid, have what is called a "semi-even fire" sequence which alternates between 132º and 108º. This comes about due to the "slipped disc" crank pins; each pair of rods are offset by 18º. The design of the crank required the connecting rods to have 0.050" narrower ends to fit onto the available rod journal space due to the material added to the cranks for strength.  
  
The 4.3L V6 engine has an even-fire sequence, occurring 120 degrees apart. This is accomplished by having a larger 30º offset on the rod journal pairs. To gain back the strength that the wider offset takes away from the crank, the rod journal diameter is larger than the other V6 engines and also larger than the SBC, at 2.25", which makes them unique among the Chevy V6 and V8 engines - these rods are not interchangable with the traditional small block.  
+
The cam and distributors are specific to the 200/229 cid engines and they cannot be interchanged with the 4.3L V6 engine. Distributor bodies used on the V6-90 are identical to the one used for the Chevrolet small-block V8 except for the pickup coil and pole piece assembly. The main difference between the semi-even fire series (200/229) and 4.3L distributors is the 4.3L distributor pickup coil and reluctor wheel has six equal points, one every 60 degrees (6 x 60 degrees = 360 degrees). Also, a majority of the distributors used on the 4.3L has a small distributor cap, same as used on the 2.8L V6 60 degree engine. The small cap/external coil ignition system is commonly used with the TBI and CPI motors (the distributor is also used with the Delco Voyager ignition kit for marine and industrial applications). The 1985-'86 4.3L engine used in Chevrolet trucks, vans (including the Astro/Safari) used the traditional large-cap HEI on the RPO LB1 motor. The LB1 distributor (with a 5 pin module for electronic spark control) is a rare find in salvage yards where the pole piece and pickup coil from a 1974-88 Chevrolet 250 or 292 inline six (some 250s manufactured between 1981-85 may have a 5 or 7 pin HEI module - usually for California applications which is similar in design to the ESC distributor used with the LB1 or 81-86 Chevrolet 305s with ESC) are usually swapped in place of the Chevrolet V8 pole piece and pickup coil. Marine applications used a unique small-capped distributor not interchangeable with those used in automobiles (with the exception of the GM small cap distributor similar in design to the passenger car/light truck small cap variant commonly supplied with the Delco Voyager ignition kit).
  
There are two production connecting rods - one for engines built in Tonawanda, NY and Romulus, MI - these sets are not interchangable.
+
From the 2007 model year until production ended, the traditional distributor was eliminated where coil packs were phased in.
  
 
==Intake manifolds==
 
==Intake manifolds==
There is only one Q-jet intake available and it was only made for two years, 1985-'86. It is found in light duty pickups/vans (the 1985 Astro van had this intake; passenger cars came standard with TBI fuel injection). It's a heavy cast iron dual plane piece, has EGR and a heat crossover. It works OK for mild builds.
+
===Aftermarket intakes===
 +
Edelbrock makes two square bore four barrel intakes for the Chevy V6 90 degree engines:
 +
*p/n 2114 for vortec heads
 +
*p/n 2111 for non vortec heads
 +
 
 +
GM makes several intakes as well:
 +
 
 +
[[File:Gm highriseV6.jpg]]
 +
*p/n 10134390 (above) is a square bore (although has both bolt patterns), high rise, has no EGR, made for use with a 390 CFM Holley although other carbs will work. Suitable for high performance street/strip use.
 +
*p/n 10051125 is the base for the raised runner cross ram intake, race only unless the engine is very healthy (below left).
 +
**p/n 10051126 is the 'upper cover' for the base. It will mount a squarebore or 4500 carb; carb flange is undrilled (below center).
 +
**p/n 10134327 is an airflow deflector used with the raised runner cross ram intake (below right).
 +
 
 +
[[File:Raised Runner Intake Manifold Base.jpg]][[File:Raised Runner Intake Manifold Cove.jpg]][[File:Manifold Deflector.jpg]]
 +
 
 +
===OEM===
 +
There is only one production factory Q-jet intake available and it was only made for two years, 1985-'86. It is found in light duty pickups/vans. It's a heavy cast iron dual plane piece, has EGR and a heat crossover. It works OK for mild builds.
 
[[File:OEM 4.3 L V6 Q-jet intake 1986-back.jpg|thumb|left|OEM 4.3 L V6 Q-jet intake 1986-back]]
 
[[File:OEM 4.3 L V6 Q-jet intake 1986-back.jpg|thumb|left|OEM 4.3 L V6 Q-jet intake 1986-back]]
 
<br style="clear:both"/>
 
<br style="clear:both"/>
Passenger cars (B and G-platform) and trucks/vans manufactured after the 1986 model year (including 1988-94 S-series trucks) came with TBI intakes.  
+
The 1985 Astro van had this intake; passenger cars came standard with TBI fuel injection. Passenger cars (B- and G-body) as well as trucks/vans manufactured after the 1986 model year (including 1988-'94 S-series trucks) came with TBI intakes. A central port injection intake manifold (with an upper and lower casting) was introduced in 1992 which has a central fuel injector with six poppet valves (used with the Astro/Safari and S-series SUVs (Blazer, Jimmy, Bravada), later revised in 1996 with sequential fuel injection. Central port injector used with 1996-'01 were known to have fuel leakage where GM redesigned the fuel spider which converts the CSFI system to a multipoint injection system.
 +
 
 +
The limited production Syclone/Typhoon has an intake manifold which uses a multipoint injection setup (with a throttle body similar to the one used with the tune port injected Corvettes and IROC-Z Camaro/Trans Am). Parts for such a conversion do not exist from the aftermarket.
  
 
===Marine intakes===
 
===Marine intakes===
There are several marine intakes, both for the Rochester 2G-type 2-barrel and the Q-jet spreadbore and Carter squarebore (uses an adaptor) 4-barrel carbs, all cast iron. In fact the only aluminum intake for the V6 Chevy 90º is a 2-barrel single plane(!) piece that was used for several years on the 200 and 229 cid engines. Not a performance-oriented part, it has a bolt pattern for the Dualjet (basically the front half of a Q-jet), which means no other carbs will fit it and there are no adaptors, either. Marine intakes would come with the traditional 12-bolt pattern (200/229 and pre-1996 4.3L) or the 8-bolt Vortec pattern for 1996-present.
+
There are several marine intakes, both for the Rochester 2G-type 2-barrel and the Q-jet spreadbore and Carter squarebore (uses an adaptor) 4-barrel carbs, all cast iron. In fact the only aluminum intake for the V6 Chevy 90º is a 2-barrel single plane(!) piece that was used for several years on the 200 and 229 cid engines. Not a performance-oriented part, it has a bolt pattern for the Dualjet (basically the front half of a Q-jet), which means no other carbs will fit it and there are no adaptors, either.  
  
 +
Marine intakes have either the traditional 12-bolt pattern (200/229 and pre-1996 4.3L) or the 8-bolt Vortec pattern for 1996-present. The angle of the center intake mounting holes changed during 1987 to 72 degrees, same as the SBC.
  
[[File:Marine 4.3 L V6 1995-back non Vortec intake.jpg|thumb|left|1995-back non Vortec intake]]
+
*p/n 14097284, Q-jet only, no EGR
 +
*p/n 14095286, squarebore only, used with the Carter carb
 +
*c/n 12552422, 2G 2-barrel intake
 +
[[File:Marine 4.3 L V6 1995-back non Vortec intake.jpg|thumb|left|1995-back non Vortec intake p/n 14097284]]
  
 
[[File:'96-up 4.3L MARINE VORTEC INTAKE OPEN PLENUM, CAST IRON.jpg|thumb|300px|right|4.3L marine Q-jet cast iron single plane intake for the '96-up Vortec heads]]
 
[[File:'96-up 4.3L MARINE VORTEC INTAKE OPEN PLENUM, CAST IRON.jpg|thumb|300px|right|4.3L marine Q-jet cast iron single plane intake for the '96-up Vortec heads]]
Line 52: Line 154:
 
[[File:4.3 L V6 MerCruiser Alpha One Generation Two Vortec Intake w- 2 barrel carb c-n GM 12552422.jpg|thumb|left|350px|1996-up 4.3 L V6 MerCruiser Vortec dual plane intake for 2 barrel carb, c/n GM 12552422]]
 
[[File:4.3 L V6 MerCruiser Alpha One Generation Two Vortec Intake w- 2 barrel carb c-n GM 12552422.jpg|thumb|left|350px|1996-up 4.3 L V6 MerCruiser Vortec dual plane intake for 2 barrel carb, c/n GM 12552422]]
  
[[File:1993 Mercruiser 4.3 LX V6 SQUAREBORE INTAKE P-N 14095286, CARTER CARB -339196005.jpg|thumb|center|300px|1995-back Mercruiser 4.3 V6 squarebore P/N 14095286, Carter carb 339196005]]
+
[[File:1993 Mercruiser 4.3 LX V6 SQUAREBORE INTAKE P-N 14095286, CARTER CARB -339196005.jpg|thumb|center|300px|1995-back Mercruiser 4.3 V6 squarebore p/n 14095286, Carter carb 339196005]]
  
 
{{Clear}}
 
{{Clear}}
Line 64: Line 166:
 
[[File:4.3L V6 OILING 2.jpg]]
 
[[File:4.3L V6 OILING 2.jpg]]
  
 +
==Front accessory set up==
 +
The early engines and 4.3L (without balance shafts) shared the accessory drive used with the SBC including the pulleys, harmonic balancers, and water pumps. Marine applications used a short water pump and a 6.75" harmonic balancer. Like the SBC, two-piece rear seals were used until the end of the 1985 model year; 1986-present are one-piece. 1987 saw the use of roller lifters.
 +
 +
==[http://www.s10forum.com/forum/f107/the-holy-grail-of-4-3-info-131868/ Rebuilding the New Chevy 262]==
 +
by Doug Anderson, Automotive Rebuilder, 04-2000
 +
 +
Thanks to all of those who have contributed information for this article, including the people at GM Powertrain - Lansing Engine.
 +
 +
Back in the late 1970s when everyone was worried about the "gas crunch," Chevy needed some smaller engines in a hurry, so it created a new family of junior-sized V6s by chopping two cylinders off its existing V8s. This enabled GM to shorten the development process dramatically because it was able to adapt a proven design. But it also allowed it to share a lot of the existing tooling from the V8 production lines so the engines could be on the road sooner.
 +
 +
The original 200 V6 that came out in 1978 was based on the 262 V8, and the 229 V6 that came out in ’80 that was based on the 305. By 1985, both were replaced by the 262 V6 that was based on the 350. It was originally installed in both cars and trucks; since ’87 it has been used primarily as a truck engine. It also has been updated several times to make it one of the best in the industry. The engine combines performance and economy in a reliable package for most of GM’s pickups, vans and sport utility vehicles.
 +
 +
Although the basic architecture has remained the same, GM has made a lot of changes to the 262 as it has continually upgraded and improved the original design. In the process, it has changed the block to accommodate a one-piece rear seal, added a roller cam and a balance shaft, modified the crank and rods, upgraded the pistons and revised the heads for better performance and emissions.
 +
 +
There are some subtle differences between the engines built in the two different plants, too. For example, the cranks and rods used in a Tonawanda engine are not the same as the ones used in a Romulus engine. There can be problems if they are intermixed. So, let’s take a look at how it all began in 1985 and see how the 262 has evolved over the past 13 years, remembering that most of these changes were made to improve power; reduce emissions; increase mileage; and reduce noise, vibration and harshness (NVH).
 +
 +
 +
'''BLOCKS'''
 +
 +
1985: The original block in ’85 was a 14071177 casting. It had a two-piece rear seal, a flat tappet cam and a fuel pump hole because all of the trucks still had carburetors. Just for the record, there were some ’86 blocks shipped with pans for ’85 service replacements, so it is possible for a customer to have an ’85 car or truck with a one-piece rear seal.
 +
 +
1986: In 1986, the block (c/n 14088553) was modified to accommodate the new one-piece rear main seal. The fuel pump hole was still open, even though it wasn’t always needed, because all of the cars and some of the trucks came with throttle body injection.
 +
 +
1987-’94 WITHOUT BALANCE SHAFT: In 1987, a roller lifter cam was installed, so the block was changed again. Two bolt bosses were added in the middle of the valley for the lifter retainer that kept the rollers properly located on the cam and perpendicular to it. This same basic block was used through ’91 for everything, and in ’92 through ’94 for all of the engines without balance shafts except for one small difference – some of the blocks came with four bolt holes for the tunnel style retainer beginning in ’92. There were several different castings used, including the 10105867, 10172756, 14099073, 14093683 and 10066011 with the two-bolt retainer, and the 10172756, 14099073 and 10066061 blocks with the four-bolt retainer.
 +
 +
1992 WITH BALANCE SHAFT: The L35 balance shaft engine was introduced in ’92, so the block was modified to make room for it above the camshaft. The lifter retainer was changed to the tunnel design because of the balance shaft; it had two bolts on each side instead of the two in the middle.
 +
 +
There were two versions of the balance shaft blocks in ’92. The "first design" block had a needle bearing on the back of the balance shaft that was lubricated by the oil mist from the valley. The "second design" had a sleeve bearing that was pressure fed through an additional drilled passage in the back of the block.
 +
 +
All of the 1992 "first design" (c/n 10105903) and "second design" (c/n 10224834) blocks were missing the two bolt bosses, one on each side, that were used with the reinforcing struts for the automatic transmission on some of the ’93 and later applications, so they can only be used in ’92. Be sure to double-check the 10224834 "second design" blocks, though, because some of them came with the strut bosses in the later years so they can be used for the ’93s and ’94s.
 +
 +
1993-’94 WITH BALANCE SHAFT: Things got more confusing with the balance shaft blocks in ’93-’94. All of these engines have to have the two extra bolt holes for the strut bosses and 10 bolt holes for the tin front cover. There are five castings that may or may not be right:
 +
 +
*All of the 10224534 and 10224535 blocks have the two strut bosses and 10 holes for the front cover, so they will fit everything in ’93 and ’94;
 +
*The 10227196 castings have the strut bosses, but they came with either six or 10 holes;
 +
*The 10224834 blocks have 10 bolt holes, but they came with or without the strut bosses;
 +
*The 10235359 blocks were the most confusing because they came with or without the two strut bosses and with either six or 10 holes for the front cover!
 +
 +
Consequently, all of these castings must be checked and sorted by both casting number and features in order to be sure that they will work in everything in ’93 and ’94.
 +
 +
1995 WITH BALANCE SHAFT: 1995 isn’t a whole lot better. All of the ’95 engines had a balance shaft and the strut bosses, but the flange around the timing gear was changed to accommodate the new plastic front cover. The overall shape stayed the same, but the flange was noticeably wider with big bulges around six of the bolt holes. See photo.
 +
 +
There was a mid-year change that can cause problems, too. The early engines used a "first design" tin front cover with 10 bolt holes. The later ones had the "second design" plastic cover that had only six bolts, so the flange can have either six or 10 holes drilled in it. See photo. That means that the tin cover won’t work on a block that was drilled for a plastic cover, so the blocks aren’t always interchangeable.
 +
 +
Things can get confusing in ’95, because the 10227196 and 10235359 castings that were used in ’95 came with the narrow flange in ’94 and were converted to the wide flange in ’95. All of the 10227196 castings had the strut bosses, but some of the earlier 10235359 castings didn’t.
 +
 +
You can use either one of these blocks in ’95 as long as it has the strut bosses and the wide flange with either six or 10 holes drilled for the front cover. But, you must be sure that the corresponding first or second design front cover is installed on the block.
 +
 +
Given the possible confusion over which cover the customer has and which block he really needs, it’s probably better to make sure all the blocks have 10 bolt holes so they will work with either front cover. Do not use an earlier block with the narrow flange with a plastic front cover under any circumstances because it will leak oil.
 +
 +
1996-’98: The block was changed again in 1996. Structural reinforcing ribs were added on both sides of the timing cover and both sides of the block were contoured to follow the shape of the cylinders more closely. See photo. This one is a 14099090 casting. This same block is used up through 1998.
 +
 +
 +
'''MORE ABOUT BLOCKS'''
 +
 +
There is one other subtle difference in the blocks. The cam bearing sets are different, depending on whether the block was made in Romulus or Tonawanda. The Tonawanda blocks use two larger diameter cam bearings, one in front and one in back, instead of only one large one in the front. Both bearing sets are available in the aftermarket.
 +
 +
There are three characteristics of each block which will tell you where it was manufactured:
 +
 +
*If it’s a Tonwanda engine, it will have a "T" stamped on the machined surface on the block just in front of the right cylinder head. The engine ID will be number stamped on the pad, and the chamfer on the cylinders will be quite shallow;
 +
*If it’s a Romulus engine, it will have an "R" stamped on the machined surface on the block. The ID number will be made up of a series of dots, and the cylinders will have a deep chamfer on them.
 +
 +
Some of the blocks are drilled for a knock sensor and some aren’t. It’s almost impossible to know which applications came with and without the sensor hole, so most rebuilders drill and tap every block so the hole is there when it’s needed.
 +
 +
 +
'''LIFTER RETAINERS'''
 +
 +
The roller cam motors have used three different lifter retainers. All of the ’87 through ’91 non-balancer blocks and some of the ’92s used a flat retainer (p/n 10046165) with two bolt holes in the middle. As of ’92, all of the balancer motors and some of the non-balancer motors came with the tunnel-shaped retainer (p/n 10105916) with four bolt holes, two on the outer edge on each side.
 +
 +
Starting in ’94, Chevy used two plastic retainers (p/n 12551431) that are bolt-in replacements for the tunnel-shaped version. There are some later intakes that will hit on the reinforcing ribs on the tunnel-shaped retainer, so it’s best to use the plastic retainers in all of the blocks that have the four bolt holes.
 +
 +
 +
'''FRONT COVERS'''
 +
 +
There have been three front covers used on the 262. The first one came on the ’85 to ’94 non-balancer engines. It’s the same one that was used on the small block Chevy. The second one was a tall, metal cover with 10 bolt holes that was used from ’92 through the ’95 "first design" balancer motors. See photo.
 +
 +
The latest version is a unitized plastic cover that is held on with only six bolts. It came out mid-year in ’95 and was installed on the "second design" engines that had the wide flange with only six bolt holes drilled in it. The plastic cover fits on the earlier balance shaft blocks, but it shouldn’t be used on them because it leaks around the bolt holes. It comes with or without a large hole drilled in the bottom corner for the crank position sensor that was installed on the engines that came with OBD II.
 +
 +
 +
'''CRANKS'''
 +
 +
Chevy has used several different cranks in the 262. They came with one- or two-piece rear seals and in both light and heavy versions that were specific to each engine plant. Here’s an overview:
 +
 +
*1985: The 1174N casting came with a two-piece rear seal and a flange in the back. See photo.
 +
*1986-’87: The 14088640 and 10105865 Tonawanda castings with a one-piece seal were both used only for heavy applications during these years. See photo.
 +
*1988-’98: The Tonawanda cranks were all 10105865 castings that came in both light and heavy versions.
 +
*1988-’98: The Romulus cranks were all 10055480 castings that came in light or heavy versions.
 +
 +
All of the engines with the one-piece seal were externally balanced with specific flywheels and dampers, but the cranks were also balanced according to the weight of the pistons and rods that were installed in the engine; it’s important to use the right combination of parts. Unfortunately, there’s no sure way to tell a light crank from a heavy one short of knowing where it came from and marking it at teardown or spinning it on a balancer. There are a couple of clues that can help, though:
 +
 +
*All of the 14088640 castings are heavy cranks that can be used in either the ’87 to ’94 non-balancer engines or in the ’93 to ’95 VIN "Z" balance shaft motors with the heavy pistons.
 +
*If a 10105865 Tonawanda casting came without a hole in the first rod pin, it’s definitely a heavy crank. If there’s a hole in the first rod pin, it’s probably a lightweight crank. However, there were a few early 10109865 cranks that had the hole drilled in the rod pin to correct the production process, so having the hole drilled doesn’t always guarantee a lightweight crank.
 +
*The 10055480 Romulus crank came both ways, too. If it has a hole in the first rod pin, it’s the lightweight version, and if it doesn’t, it’s always a heavy crank.
 +
 +
The heavy cranks were used in all of the engines without a balance shaft and in all the VIN "Z" balance shaft motors with the heavy pistons, including the ’95 "second design" versions. The lightweight cranks were used with the lightweight pistons in the ’92-’98 VIN "W," the ’95 VIN "Z," "first design" engines, and in the ’96-’98 VIN "X" engines. Using the right crank in the right engine will help prevent balance problems out in the field.
 +
 +
However, you should also be aware that all of these engines are externally balanced with various combinations of flywheels/flexplates and dampers for balance, and that they are "trimmed" at the factory after the hot-run test by pounding balance weights into the holes that are already drilled in the damper. So, if you build them right and still have a shaker, the customer will have to add or subtract weight from the damper and/or flywheel/flexplate in order to get it right.
 +
 +
There is one other subtle difference in the cranks, too. Any of the engines that were installed in ’96 or later and all of the ’95 "S" and "T" trucks with OBD II, including all of the Olds Bravadas, any Blazer with California emissions, and about 10% of the Blazers with federal emissions, had a reluctor wheel installed in front of the crank gear for a crank position sensor that was a part of OBD II. The raised, machined area on the snout is about .100" longer on these cranks than it was on the earlier ones so the reluctor wheel has a slight press fit. Be sure to sort out the 10105865 and 10055480 cranks with this longer, machined step and save them for the engines that have the crank position sensor.
 +
 +
 +
'''RODS'''
 +
 +
{{Note1}}There are four different rods in two different weights that come from two different engine plants, so there’s plenty of room for confusion, but it all works out if you follow these two rules:
 +
 +
Rule 1: Keep similar rods in sets by both appearance and weight;
 +
 +
Rule 2: Use only Romulus rods with Romulus cranks.
 +
 +
Then, the question is, how do you tell them apart so you can follow the rules? Start by sorting them by engine plant based on the shape of the balance pad on the big end. If the rod has a cast pad that’s only machined on the face, it’s a Tonawanda rod. These rods don’t have a forging number and may or may not have a dot on the shank. See photo.
 +
 +
If the weight pad on the big end is long and narrow and has been machined on all five surfaces including the sides, the ends and the face, it’s a Romulus rod. All of these rods will have an 818 or 045 forging number on the shank so they’re easy to identify.
 +
 +
After you have separated the rods by source, sort them by weight and put them in sets. The lighter ones will weigh around 662 grams, and the heavier ones should weigh about 675 grams.
 +
 +
The light and heavy rods can be interchanged in engines in sets, but it’s best to use the Romulus rods only on Romulus cranks because you may end up with a ticking noise if they are used with a Tonawanda crank. The Romulus rods have a wider face adjacent to the parting line that can hit on the side of the split pin rod journal, so the Romulus cranks are machined to provide additional clearance for the rods.
 +
 +
The Tonawanda cranks aren’t relieved in this area, so there can be light interference and a noise problem. The Tonawanda rods have the narrower face at the parting line so they can be used with either crank.
 +
 +
 +
'''PISTONS'''
 +
 +
There have been five different pistons used in the 262 along with two versions of the lightweight piston.
 +
 +
'''1)''' The original, heavy piston used in the 262 was the same as the one that was used in the 350 V8 except that the pin boss was opened up slightly for the offset rod. It weighed about 745 grams with the pin and had a 9.1:1 compression ratio. It was used in all of the light duty engines without the balance shaft from ’85 through ’94 and in the VIN "Z" balance shaft motors from ’93 through part of ’95.
 +
 +
The parts catalog identifies the ’95 VIN "Z" engines with this heavy piston as the "second design" version even though they were built during the first part of the year. They will have one of the following engine codes: ALH, ALA, ALB, ALC, ALD, ALF, ALH, ALJ, ALL, ALP, ALS, AJS, AJT, AJW and AJU.
 +
 +
'''2)''' The lightweight piston weighs about 675 grams with a pin. It was used in all the high output, balance shaft engines (VIN "W") from ’92 through ’98 and in all the VIN "X" engines from ’96 through ’98. It was also used in the "first design" VIN "Z" engines that were built during the latter part of model year ’95, including those with the following engine codes: AAB, AAC, AAF, AAJ, AAK, AAL, AAP, AAS, AAW, AFC, AFD, AHC and AHD.
 +
 +
The lightweight piston was originally a Mahle, full-round design (p/n 2753), but GM switched to its own "RPM" (Revised Permanent Mold) design with a short slipper skirt and a narrower pin boss in ’95. Both of these pistons have very short skirts, so the clearance must be right or they tend to make noise at startup.
 +
 +
'''3)''' There was a heavy duty engine offered for trucks and vans with over 8500 GVW from ’89 through ’95. It used a heavy duty, Zollner piston that had an 8.3:1 compression ratio and weighed the same as the regular heavy piston.
 +
 +
'''4)''' There was also a high output, VIN "B" (LU2) engine offered in the Astro van in ’90 and ’91. It used a special, hypereutectic, strutless piston that is available from GM under p/n 10181389 in standard, or from Zollner as a H-8269-D. It weighs about 745 grams, just like the rest of the heavy pistons.
 +
 +
'''5)''' There was one more piston used in the 262. It’s a low compression (8.6:1), strutless, hypereutectic piston with a deeper dish that was used in the turbocharged Syclones and Typhoons from ’91 through ’93. The OEM standard piston is p/n 12508702 and the Zollner number is a H-8269-E.
 +
 +
All of these pistons are specific to the application, so they should not be interchanged. Building an engine with pistons that have the wrong weight or compression ratio will guarantee a comeback, so it’s better to play by the book.
 +
 +
 +
'''BALANCE SHAFTS'''
 +
 +
Any 90° V6 creates some strong, primary imbalance forces, especially in the vertical mode. The 262 is no exception. Chevy originally underbalanced these engines by putting about 46% on the bobweights instead of the usual 50%. This reduced the vertical imbalance that was trying to lift the engine up off the mounts, but created a strong horizontal imbalance that shook the engine from side-to-side instead. So, in order to eliminate a lot of the "noise, vibration and harshness" in the engine and make it into a world-class motor, Chevy added a balance shaft to the premium engines in ’92 and included it in all of them by ’95.
 +
 +
There are two balance shafts, a light one and a heavy one, and two versions of the light one. See photo. The light one is either a 10224542 or a 10172748 casting that comes with or without a metal wear sleeve installed on the back journal, depending on the application. The wear sleeve was used on the lightweight balance shaft when it was installed in a ’92 "first design" engine with the needle bearings in the back, but it wasn’t used when the lightweight shaft was installed in the "second design" engine that had a bushing in the back of the block.
 +
 +
This "first design" shaft should not be used in a "second design" engine because the wear sleeve shortens the surface area needed for the bushing. These lightweight shafts were installed in all of the engines that had the light pistons including the ’92-’98 VIN "W," the ’96-’98 VIN "X" engines and the "first design" VIN "Z" engines in ’95 that were built with the lightweight pistons.
 +
 +
The heavy balance shaft is either a 10224541, a 10105902 or a 12550286 casting. It can be visually identified by the raised identification band around the middle of the shaft. It was used in all the ’93-’94 VIN "Z" balancer engines and in the ’95 "second design" VIN "Z" balancer engines with the heavy pistons. The heavy balance shaft weighs about 125 grams more than the light one, so it shouldn’t be interchanged with the lighter one.
 +
 +
The balance shafts rotate at engine speed and are gear driven off the front of the cam. There are two different gear sets, one with "wide" teeth and one with "narrow" teeth. The ones with the "wide" teeth were used in the "first design" engines along with the needle bearing balance shaft. Some of these early balance shaft engines had a whine to them, so the gears were modified at the same time the block was changed over to the "second design" version with the sleeve bearing in the back. We recommend using only the "second design" gears to help avoid any possible noise problems.
 +
 +
 +
'''CAMS, LIFTERS, TIMING GEARS'''
 +
 +
Several cams have been used in the 262. There are important differences in both the specifications and the base circle diameter.
 +
 +
*1985-’86: The same flat tappet cam was used in ’85 and ’86.
 +
*1987- ’91 VIN "Z": The original roller cam used for the throttle body motor was a 10088148 or a 14093686. It had a 1.380" intake base circle, a 1.335˝ exhaust base circle, and a pretty mild grind.
 +
*1990-’91 VIN "B": The H.O. motor had a much hotter cam that should not be interchanged with any other application. It’s a p/n 10055487.
 +
*1992-’94 VIN "Z" WITHOUT BALANCE SHAFT: The specs for this cam were comparable to the earlier VIN "Z" cams, but the base circle on both the intake and exhaust was reduced to 1.260˝. The OEM part numbers are 10144176, 10214713 and 10172776.
 +
*1993-’95 VIN "Z" WITH BALANCE SHAFT: The specs on this cam were similar to the ones used in the VIN "Z" without a balance shaft, but a snout was added for the balancer drive gear. It’s a p/n 10144065.
 +
*1992-’95 VIN "W" WITH BALANCE SHAFT: The premium high output engine came with central fuel injection, a balance shaft and a better cam starting in ’92. The original cam, p/n 10144047, was used from ’92 to ’94. It was replaced by p/n 10241693 in ’95. They are comparable grinds so most rebuilders are interchanging them.
 +
*1996-’98 VIN "X" WITH BALANCE SHAFT: The VIN "X" engine replaced the VIN "Z" in ’96. It is identical to the ’96 VIN "W" engine except for a milder cam and 10 less horsepower. The cam is a p/n 10241692.
 +
*1996-’98 VIN "W" WITH BALANCE SHAFT: The VIN "W" engine has a 10541691 camshaft and makes 10 more horsepower than the VIN "X" engine. There is also a special roller cam for the VIN "Z" turbocharged engines (p/n 10214714) along with a couple more with a fuel pump lobe for marine and industrial applications, but these are the common ones that were used in most of the cars and trucks. All of these cams can be identified by the last three digits of the part number that is stamped on the barrel of the cam, just behind the last lobe and in front of the distributor gear.
 +
 +
Matching the right cam with the right lifter and adjusting the valves correctly is important in order to avoid noisy lifters at startup, a problem that’s commonly known as "morning sickness." Prior to ’92, the 262 had the traditional adjustable rockers that had been used on all of the small block Chevys for years. The cam had a 1.380"/1.335" base circle and used a short-travel lifter. Turning the rocker nut one turn gave the lifter a 0.040" preload and put the plunger in the middle of its travel.
 +
 +
In 1992, when Tonawanda switched to a "net lash," non-adjustable valvetrain; the base circle was reduced to 1.260" on all of the cams, and a lifter with more travel was used across the board, apparently to provide more latitude for manufacturing tolerances with the "net lash" rockers. (Note: The Romulus plant did not switch to "net lash" until ’95). Unfortunately, this combination can cause noise problems in the field because it takes longer for the lifter to refill at startup when it has bled down overnight, unless the preload is set at 0.080".
 +
 +
This problem can be cured by turning the rocker nut two turns with the adjustable rockers, but that can’t be done with the "net lash" setup, and it’s contrary to everything everybody knows about setting the valves on a Chevy, too. The best approach requires the replacement of the "net lash" studs with a set of special conversion studs that have metric threads on the bottom, along with 3/8" threads on the top, and using them along with the short lifters that are preloaded one turn.
 +
 +
If you prefer to rebuild the engines as they came and use the longer lifters with the adjustable rockers, increasing the preload to two turns will help avoid "morning sickness." Carefully controlling the stem heights and clearances with the "net lash" rockers will help ensure that you have enough preload to avoid noisy lifters most of the time.
 +
 +
Just for the record, there’s one extra benefit to switching to the short lifters and the adjustable valvetrain on everything; you can disregard the base circle issues and consolidate more of the cams.
 +
 +
There are two cam thrust plates used for the roller cam engines. The one for the non-balancer engines that are smooth on both sides are available under either p/n 14093636 or p/n 10088128 (aka “early” V8 plate). The thrust plate for the balancer engines is smooth on one side and has four radial grooves on the other side. It’s a p/n 10144059.
 +
 +
Chevy has used three different timing gears for the 262 since ’85. The flat tappet engines used a p/n 340235, the non-balancer, roller cam engines had a p/n 12552128 and the balancer engines used a p/n 10144121. They are not interchangable.
 +
 +
 +
'''CYLINDER HEADS'''
 +
 +
There have been several cylinder heads used on the 262 since it began in ’85. Some of the changes appear to be minor, but most of them will create problems if the wrong head is used in the wrong place. Here’s an overview year by year:
 +
 +
*1985-’86: The 1985 and ’86 engines used a 14079248 casting. It had two holes on one end and three on the other end. (76cc chambers)
 +
*1987-’91 TRUCK, EXCEPT HEAVY DUTY AND ’87-’93 CARS: These heads were the same as the earlier ones except that they had three bolt holes on both ends. The intake surface above the ports was quite narrow; it’s only about 0.250" wide. The unmachined, cast ledge on the top edge of the head was 0.600" wide. Look for c/n 14094768, 10144103, 14099067 or 12553050. All of these heads had adjustable rockers.
 +
 +
{{Note1}}(Tonawanda switched to "net lash" rockers in ’92, so some of these are adjustable and some aren’t.)
 +
 +
*1992 TRUCK WITH TBI AND NO BALANCE SHAFT: These heads had a wider surface for the intake gasket even though they didn’t need it because all of the tooling was changed to accommodate the new heads for the VIN "W" CFI engines that were introduced in ’92. The 10144103 casting was carried over from ’91, but it had the wide intake with straight ports on the top. It can be used along with any of the earlier 14094768, 10144103, 14099067 or 12553050 castings from ’87 through ’91.
 +
*1992-’93 TRUCK WITH CFI, BALANCE SHAFT: When the high output VIN "W" engine with central fuel injection was introduced in ’92, the heads were redesigned for the application. They had "eyebrows" added to the top of the intake ports to make room for the injector nozzles, so the intake surface above the ports was increased by 0.250˝ for improved sealing, and the cast ledge above it was narrowed down to 0.350˝ to provide more room for the intake manifold.
 +
 +
The 10077626, 14099064, 10240209 or 10238181 castings were used, but be sure to check them over carefully because there are two versions of the 10238181 and 10240209 castings with an important difference. In ’92 and ’93, they came with an 8° top angle on the intake seat and a 75° throat, but that was changed to a 30° top angle with an 80° throat in ’94. Separate the 8° heads from the 30° heads and use them only on the ’92 and ’93 engines.
 +
 +
Tonawanda switched to "net lash" rockers in ’92, so some of these are adjustable and some aren’t.
 +
 +
*1993 TRUCK WITH TBI, EXCEPT HEAVY DUTY: The intake manifold on the TBI motor was modified in ’93 to take advantage of the wider intake surface that was machined on the ’92 and up heads, so these engines must have the heads with the wide intake and should use the castings with the 8° top angle on the intake seat.
 +
*1994-’95 TRUCK WITH TBI OR CFI, EXCEPT HEAVY DUTY: The top angle for the intake seat was changed from 8° to 30° and the throat was opened up from 75° to 80° to give a 10% increase in intake airflow for better performance in ’94. The same heads were used on both the TBI and CFI engines through ’95.
 +
 +
Both the 10238181 and 10240209 castings were used, but they have to be visually sorted because the early ones with the 8° seat probably shouldn’t be used on the ’94s and ’95s. If you do decide to stretch the rules and use the ’93 heads on a ’94-’95 engine, be sure to use them in pairs. Some of the ’94s still had adjustable rockers because Romulus didn’t switch over to "net lash" until ’95.
 +
 +
*1996-’98 ALL TRUCKS EXCEPT HEAVY DUTY: There was another all new head introduced in ’96. It had bigger intake and exhaust ports, no exhaust crossover and four angled bolts for the intake. It’s the 10235772 casting that was used up through ’98.
 +
*1989-’95 HEAVY DUTY TRUCK WITH TBI: There have been three different heads used on the heavy duty 262 since ’89.
 +
 +
'''1)''' 1989-’92: The original head, c/n 14099066 was used up through ’91. The 10144115 casting with the wider intake surface showed up in ’92 even though the narrow one still worked. Both of these castings are interchangeable.
 +
 +
'''2)''' 1993: The 14099070 casting came with an 8° top angle on the intake seat in ’93, but it was also available with the 30° top angle in ’94 and ’95. Sort them accordingly and use them in pairs.
 +
 +
'''3)''' 1994-’95: The 14099070 casting with the 30° top angle for better airflow should be used on the ’94 and ’95 engines. Be sure to use them in pairs. See photo.
 +
 +
All of these heavy duty heads had hard donut seats, replaceable guides and heavy duty exhaust valves with 3/8" stems.
 +
 +
*1991-’93 SYCLONE AND TYPHOON WITH TURBOCHARGER: The turbo motors used the same heads that were installed on the VIN "Z" throttle body motors. It appears that they came with the narrow intake surface all the way through ’93. Look for the 14094768, 10144103 and 1409967 castings.
 +
 +
 +
'''KNOCK SENSORS'''
 +
 +
Beginning in ’86, some of the 262s had fuel injection, and by ’87 all of them were fuel injected and computer controlled, so they had either one or two knock sensors. It’s almost impossible to know whether the engine came with one or two and where they were located, because it varied by year, model, engine and application.
 +
 +
The sensor has been installed in the top or bottom hole in the left head, in the bottom hole in the right head, in the back of the block or in the back of the right head. The wiring harness will not reach if the sensor is in the wrong location and that the sensors can’t always be interchanged because some of them have tapered pipe threads and others have metric threads.
 +
 +
So, it comes down to practicing damage control by building all of these engines with a fail-safe combination like this:
 +
 +
*Drill and tap every block for a metric knock sensor.
 +
*1987-’92: The left head must have two holes with at least one wet hole on the bottom. The right head must have at least one wet hole in the bottom location.
 +
*1993-’95: The left head must have two wet holes. The right head must have at lest one wet hole in the bottom location.
 +
 +
You may have to drill some that came with a dry hole on the top and convert others by drilling and tapping a second hole in order to have enough heads. Check to see if the casting is thick enough before drilling it. Some of them like the 10077626 don’t have the pad so they can’t be converted, but others like the 14099064 can be drilled even if the second hole isn’t there. It may take some extra time, but using one of these combinations will avoid all kinds of problems in the field.
 +
 +
'''REBUILDING TIPS'''
 +
 +
Rebuilding these engines is pretty straightforward. The blocks seldom crack, except some of the 10227196 castings, and the heads are usually good. The cranks are another story, though, with about 30 percent down on at least one rod journal, usually toward the front of the crank. Cam mortality can be a problem, too, with up to 20 percent of the roller cams needing replacement. There are some other areas that can cause problems, too:
 +
 +
'''OIL PUMPS'''
 +
 +
From ’85 through early ’93, the 262s used the regular small block oil pump with the 0.620" (5/8") hole for the pickup tube. In mid-’93, the pump was changed because the pickup tube was enlarged to 0.742" on the "S" and "T" trucks. After ’93, all of the engines used the pump with the big hole.
 +
 +
'''PICKUP TUBES'''
 +
 +
There are several different pickup tubes used, depending on the application, and there are two different diameters, depending on the year and application. Be sure to check it out carefully and match them up at the sales counter if at all possible.
 +
 +
'''WATER HOLES'''
 +
 +
The intake gaskets may have the rear water holes open or restricted, depending on the application. The holes are always open on the carbureted truck engines, but they may or may not be open on the injected engines. When the blocked gaskets are installed correctly, there will be two small tabs sticking out from the front of the intake. If they are installed backwards, the tabs will not be showing and the engine will overheat because there is no circulation.
 +
 +
 +
'''CONCLUSION'''
 +
 +
That’s the story on the 262 and the changes that have been made over the years. It all makes sense when you see it in the perspective of time, but these engines can still be a handful to catalog and build. Just treat it like it’s a part of the small block family, and you’ll know what goes where and how it all fits together.
  
 +
==Resources==
 +
*[http://hotsixes.com/index.php?option=com_content&view=article&id=14&Itemid=12 hotsixes.com]
 +
*[http://www.brodix.com/heads/v6heads.php Brodix heads]
  
  
{{youcanedit}}
 
  
[[Category:undeveloped articles]]
 
 
[[Category:Engine]]
 
[[Category:Engine]]
 
[[Category:GM]]
 
[[Category:GM]]

Latest revision as of 07:22, 18 September 2023

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox