Bulletproof cooling system
(→Bulletproof cooling system tips) |
|||
Line 19: | Line 19: | ||
*The most common problems radiators fall prey to are clogging (both internal and external) and leaks. Dirt, bugs and debris can block airflow through the core and reduce the radiator’s ability to dissipate heat. Internal corrosion and an accumulation of deposits can likewise inhibit coolant circulation and reduce cooling. “Back flushing” the radiator and cooling system when changing coolant is highly recommended to dislodge accumulated deposits and to flush the remaining coolant from the engine block. Back flushing is running water back through the radiator and engine in the opposite direction to which it normally flows. After the coolant has been drained from the radiator, a T-fitting is installed in the heater inlet hose. The fitting is then connected to a pressurized water hose or power flusher. The water is turned on and the system is reverse flushed. The flushing should be continued until only clean water emerges from the radiator. Cleaning chemicals may also be used to remove accumulated deposits from the system. | *The most common problems radiators fall prey to are clogging (both internal and external) and leaks. Dirt, bugs and debris can block airflow through the core and reduce the radiator’s ability to dissipate heat. Internal corrosion and an accumulation of deposits can likewise inhibit coolant circulation and reduce cooling. “Back flushing” the radiator and cooling system when changing coolant is highly recommended to dislodge accumulated deposits and to flush the remaining coolant from the engine block. Back flushing is running water back through the radiator and engine in the opposite direction to which it normally flows. After the coolant has been drained from the radiator, a T-fitting is installed in the heater inlet hose. The fitting is then connected to a pressurized water hose or power flusher. The water is turned on and the system is reverse flushed. The flushing should be continued until only clean water emerges from the radiator. Cleaning chemicals may also be used to remove accumulated deposits from the system. | ||
− | *Use a radiator of at least the same square inch area that was used originally to cool the engine from the factory. '''The engine''', not the car. | + | *Use a radiator of at least the same square inch area that was used originally to cool the engine from the factory. '''The engine''', not the car. Big block in a Vega? Use a big block radiator from a different car, not a Vega radiator. |
* Use a "high bypass" thermostat rather than a "standard" one. The standard thermostat flows very little coolant even when temperature is above it's open mode and full flow is active. Look at a standard and high bypass and see the huge difference in volume of flow. The high bypass may flow as much coolant when closed as the standard does when open. In my experience this one factor has more influence on cooling than all others combined. | * Use a "high bypass" thermostat rather than a "standard" one. The standard thermostat flows very little coolant even when temperature is above it's open mode and full flow is active. Look at a standard and high bypass and see the huge difference in volume of flow. The high bypass may flow as much coolant when closed as the standard does when open. In my experience this one factor has more influence on cooling than all others combined. | ||
*Use a radiator with the same or more radiator cores that were used originally to cool the engine from the factory. Two cores will cool most motors, although in special towing cases or applications where the motor is put under considerable load for periods of time, a three core unit may be a better choice. ''(confirm and expand)''. Once again, '''the engine''', not the car. Its important to note that additional rows of radiators don't add a proportional amount of cooling efficiency. For instance, going from a 2-row to a 3-row doesn't increase the cooling efficiency by 50% because the subsequent rows are receiving warm air from the rows in front. Adding radiator frontal area IS proportional, but since the radiator size is mostly fixed because of what fits in the car, additional rows are often the only choice. | *Use a radiator with the same or more radiator cores that were used originally to cool the engine from the factory. Two cores will cool most motors, although in special towing cases or applications where the motor is put under considerable load for periods of time, a three core unit may be a better choice. ''(confirm and expand)''. Once again, '''the engine''', not the car. Its important to note that additional rows of radiators don't add a proportional amount of cooling efficiency. For instance, going from a 2-row to a 3-row doesn't increase the cooling efficiency by 50% because the subsequent rows are receiving warm air from the rows in front. Adding radiator frontal area IS proportional, but since the radiator size is mostly fixed because of what fits in the car, additional rows are often the only choice. |