Bulletproof cooling system

Jump to: navigation, search
m (Bulletproof cooling system tips)
(Directing air flow)
Line 69: Line 69:
 
==Directing air flow==
 
==Directing air flow==
  
Moving the air through the radiator is one of the most important points of engine cooling and heat dispersal. In order for cooling to take place, the air MUST move through the radiator fins, and, by way of convection, the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air must pass THROUGH the radiator, NOT OVER OR AROUND IT. Seal up hood-to-radiator cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan.  Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason.
+
Moving the air through the radiator is one of the most important points of engine cooling and heat dispersal. In order for cooling to take place, the air MUST move through the radiator fins, and, by way of convection, the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air must pass THROUGH the radiator, NOT OVER OR AROUND IT. Seal up hood-to-radiator cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan.  Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason. The reason is; air flow is smoothed over the A-arms and is not turbulent or 'ragged' it will flow better being more direct it will flow out of the engine compartment faster. The rubber skirt also keep road grime, stones and debris from entering the engine compartment and rad area.
  
If you have a external trans cooler in front of the radiator and also have a high stall torque converter, your fluid temperature in the trans cooler will pre-heat the incoming air to the radiator. If this is the case, try relocating the trans cooler to another location. Remember when doing this though, that if the car isn't moving, there is no cooling air going over the cooler.   
+
If you have a external trans cooler in front of the radiator and also have a high stall torque converter, your fluid temperature in the trans cooler will pre-heat the incoming air to the radiator. If this is the case, try relocating the trans cooler to another location. Remember when doing this though, that if the car isn't moving, there is no cooling air going over the cooler to bring fluid temperatures down.   
  
Hood removal will cause buffeting of air in the engine compartment and result in uneven pressure. Removal of side panels on three piece hoods will exhaust air better in some cases. Louvers in hoods and side panels are a godsend to ventilating hot air from the engine compartment.
+
Hood removal will cause buffeting of air in the engine compartment and result in uneven pressure. Removal of side panels on three piece hoods will exhaust air better in some cases. Louvers in hoods and side panels are a godsend to ventilating hot air from the engine compartment. Fade-away fenders of the 30 's and 40's remove a lot of air from the engine compartment.
  
 
All air in front of the radiator cradle is positive flow, air after the radiator cradle is negative flow in a driving automobile. In order for that arrangement to continue, air must be evacuated from the engine compartment. When the vehicle is at a standstill, the engine fan provides flow from positive to negative and cools the engine compartment. The fan should have the ability to push/pull enough air to keep the temperature within operating range of 160 to 210 degrees.  
 
All air in front of the radiator cradle is positive flow, air after the radiator cradle is negative flow in a driving automobile. In order for that arrangement to continue, air must be evacuated from the engine compartment. When the vehicle is at a standstill, the engine fan provides flow from positive to negative and cools the engine compartment. The fan should have the ability to push/pull enough air to keep the temperature within operating range of 160 to 210 degrees.  

Revision as of 15:31, 21 May 2011

Personal tools
Namespaces
Variants
Actions
Navigation
Categories
Toolbox