Bulletproof cooling system
(Clean up; add link; format.) |
(Size warning- removed Oil coolers, 400 SBC engines, and Cadillac radiator swap for possible use elsewhere, seen on discussion page.) |
||
Line 1: | Line 1: | ||
+ | |||
{{needspics}} | {{needspics}} | ||
Line 34: | Line 35: | ||
==Bulletproof cooling system tips== | ==Bulletproof cooling system tips== | ||
*Clogging and leaks are two of the most common radiator problems. Bugs, dirt, and debris can block airflow, and limit the radiator's heat-dissipating characteristics. Thus, it's recommended to "back flush" the radiator and cooling system when changing coolant. This helps to clean out deposits, and flushes the remaining coolant from the engine block. You can back flush the radiator by running water through it in the opposite direction of regular flow. Typically, after draining the radiator a t-fitting can be installed in the heater inlet hose. This fitting gets connected to a pressurized water hose, and the system is reverse flushed. Do this until clean water emerges. | *Clogging and leaks are two of the most common radiator problems. Bugs, dirt, and debris can block airflow, and limit the radiator's heat-dissipating characteristics. Thus, it's recommended to "back flush" the radiator and cooling system when changing coolant. This helps to clean out deposits, and flushes the remaining coolant from the engine block. You can back flush the radiator by running water through it in the opposite direction of regular flow. Typically, after draining the radiator a t-fitting can be installed in the heater inlet hose. This fitting gets connected to a pressurized water hose, and the system is reverse flushed. Do this until clean water emerges. | ||
− | *A rough guide is to use a radiator at least as large as the one that was originally used to cool the engine, with the same or more radiator cores. However, it's important to note that additional rows don't add a proportional amount of cooling, i.e. a 3-row radiator does not necessarily offer 50% more cooling than a 2-row radiator. This is because subsequent rows receive warm air from the rows in front of them. However, adding radiator frontal area IS proportional, but this usually causes fitment issues, so additional rows are generally the only viable choice. Also the radiator design and materials can have an | + | *A rough guide is to use a radiator at least as large as the one that was originally used to cool the engine, with the same or more radiator cores. However, it's important to note that additional rows don't add a proportional amount of cooling, i.e. a 3-row radiator does not necessarily offer 50% more cooling than a 2-row radiator. This is because subsequent rows receive warm air from the rows in front of them. However, adding radiator frontal area IS proportional, but this usually causes fitment issues, so additional rows are generally the only viable choice. Also the radiator design and materials can have an effect on the radiator efficiency; a larger radiator is not necessarily a better radiator. |
*Oftentimes, the cheapest and most bulletproof way is to use the largest radiator that will fit, along with the fan type and size, and shroud that was designed for the radiator from the factory. | *Oftentimes, the cheapest and most bulletproof way is to use the largest radiator that will fit, along with the fan type and size, and shroud that was designed for the radiator from the factory. | ||
*Use a full shroud, with the radiator positioned so that the fan blades are half-in and half-out of the shroud hole, and no more than 1" of clearance between the shroud and the fan blade tips (just enough to prevent interference when the motor rocks on its rubber mounts). | *Use a full shroud, with the radiator positioned so that the fan blades are half-in and half-out of the shroud hole, and no more than 1" of clearance between the shroud and the fan blade tips (just enough to prevent interference when the motor rocks on its rubber mounts). | ||
*Fan recommendations: OEM 18 inch, 7-blade steel fan with 2" to 2-3/4" pitch. The pitch of a fan can be measured by laying the fan down on a flat surface and measuring from the flat surface to the edge of the fan blade. Fans that are relatively flat (such as a flex fan) may not move enough air at idle and low engine RPM to cool the engine properly. | *Fan recommendations: OEM 18 inch, 7-blade steel fan with 2" to 2-3/4" pitch. The pitch of a fan can be measured by laying the fan down on a flat surface and measuring from the flat surface to the edge of the fan blade. Fans that are relatively flat (such as a flex fan) may not move enough air at idle and low engine RPM to cool the engine properly. | ||
− | *When possible, use a thermostatically controlled fan clutch. | + | *When possible, use a thermostatically controlled fan clutch. While a thermostatically modulated fan clutch is an effective means of operating the cooling system's fan, a worn or defective fan clutch can cause overheating if left undiagnosed. Sometimes they may appear to be OK when cold but they will free-wheel when hot. |
*Water pump and crankshaft pulleys sized according to what was on the engine from the factory. On a street motor, shoot for 1.2 to 1.3 times crank speed for pump pulley speed. This is usually true until you get to 3.55 gears and numerically higher, then 1:1 works better. Most 1960s muscle cars are 1:1. Sustained pump speeds over 4200 rpm can cause cavitation. Race vehicles may use a 2.3:1 ratio for a 9000-plus rpm engine. | *Water pump and crankshaft pulleys sized according to what was on the engine from the factory. On a street motor, shoot for 1.2 to 1.3 times crank speed for pump pulley speed. This is usually true until you get to 3.55 gears and numerically higher, then 1:1 works better. Most 1960s muscle cars are 1:1. Sustained pump speeds over 4200 rpm can cause cavitation. Race vehicles may use a 2.3:1 ratio for a 9000-plus rpm engine. | ||
*On a carburetor-equipped engine, often a 180º thermostat is used, although a little hotter thermostat rating (190º-195º) may make the motor more responsive and add a little fuel mileage. It may also help to burn off some of the by-products of combustion, such as moisture and acids which form and get into the oil. Motors using EFI induction should use the thermostat temperature specified by the factory for that particular motor to prevent false input to the computer and consequent problems. The sensor pill goes toward the motor. | *On a carburetor-equipped engine, often a 180º thermostat is used, although a little hotter thermostat rating (190º-195º) may make the motor more responsive and add a little fuel mileage. It may also help to burn off some of the by-products of combustion, such as moisture and acids which form and get into the oil. Motors using EFI induction should use the thermostat temperature specified by the factory for that particular motor to prevent false input to the computer and consequent problems. The sensor pill goes toward the motor. | ||
Line 50: | Line 51: | ||
==Swapping a core support and matching radiator into a recipient vehicle== | ==Swapping a core support and matching radiator into a recipient vehicle== | ||
In doing this swap, you will have to re-install the recipient vehicle's hood latch onto the donor core support in the proper location. Make up a fixture beforehand from scrap metal that bolts to the fender bolts or some other location that will be the same after the core support swap, and will show the proper location for the latch. This is a must-do when doing a frame or clip swap. | In doing this swap, you will have to re-install the recipient vehicle's hood latch onto the donor core support in the proper location. Make up a fixture beforehand from scrap metal that bolts to the fender bolts or some other location that will be the same after the core support swap, and will show the proper location for the latch. This is a must-do when doing a frame or clip swap. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Directing air flow== | ==Directing air flow== | ||
Line 146: | Line 125: | ||
== Radiator shroud== | == Radiator shroud== | ||
Radiator shrouds are devices that control the exiting air from the radiator and direct it to a rearward sucking electric or mechanical fan. Shrouds can be made from plastic, fiberglass, and metal (aluminum or steel). They cover the rear portion of the radiator. Allow air passing through the radiator to be ducted to the fan which directs air flow over the engine and out of the engine bay. In most cases, the mechanical fan will be inserted approximately 1/3 of the depth of the fan blades into the shroud, this is usually sufficient to draw a full charge of air and disburse it adequately without disrupting air flow. | Radiator shrouds are devices that control the exiting air from the radiator and direct it to a rearward sucking electric or mechanical fan. Shrouds can be made from plastic, fiberglass, and metal (aluminum or steel). They cover the rear portion of the radiator. Allow air passing through the radiator to be ducted to the fan which directs air flow over the engine and out of the engine bay. In most cases, the mechanical fan will be inserted approximately 1/3 of the depth of the fan blades into the shroud, this is usually sufficient to draw a full charge of air and disburse it adequately without disrupting air flow. | ||
− | |||
== Radiator cap== | == Radiator cap== | ||
Line 200: | Line 178: | ||
'''NOTE:''' The old type of thermostat used metal bellows filled with a liquid. The condensed liquid would "suck" the bellows closed. This type of thermostat always fails in the open position which is extremely convenient as one does not have to buy a new cylinder head or engine. Nowadays this type is very difficult to obtain. | '''NOTE:''' The old type of thermostat used metal bellows filled with a liquid. The condensed liquid would "suck" the bellows closed. This type of thermostat always fails in the open position which is extremely convenient as one does not have to buy a new cylinder head or engine. Nowadays this type is very difficult to obtain. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== |