Bulletproof cooling system
(→See also) |
|||
Line 2: | Line 2: | ||
[[Image:Cooling_system.gif|frame|Typical cooling system.]] | [[Image:Cooling_system.gif|frame|Typical cooling system.]] | ||
− | |||
− | |||
− | |||
− | |||
==What causes overheating?== | ==What causes overheating?== | ||
Line 58: | Line 54: | ||
In doing this swap, you will have to re-install the recipient vehicle's hood latch onto the donor core support in the proper location. Make up a fixture beforehand from scrap metal that bolts to the fender bolts or some other location that will be the same after the core support swap, and will show the proper location for the latch. This is a must-do when doing a frame or clip swap. | In doing this swap, you will have to re-install the recipient vehicle's hood latch onto the donor core support in the proper location. Make up a fixture beforehand from scrap metal that bolts to the fender bolts or some other location that will be the same after the core support swap, and will show the proper location for the latch. This is a must-do when doing a frame or clip swap. | ||
− | ==Recommended donor vehicles== | + | ===Recommended donor vehicles=== |
*'76 Cadillac Fleetwood or Eldorado. For example: [http://www.radiatorexpress.com/product.asp?part=1976+CADILLAC+FLEETWOOD++%2D+8%2E2+liter+V8+RADIATOR+Name+Brand+Replacement&part_id=1357&aaia_id=1026582 1976 Cadillac Fleetwood 8.2 liter V8 radiator]. | *'76 Cadillac Fleetwood or Eldorado. For example: [http://www.radiatorexpress.com/product.asp?part=1976+CADILLAC+FLEETWOOD++%2D+8%2E2+liter+V8+RADIATOR+Name+Brand+Replacement&part_id=1357&aaia_id=1026582 1976 Cadillac Fleetwood 8.2 liter V8 radiator]. | ||
*Mid-70's Chevrolet truck with a 454. For example: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+Name+Brand+4%2DRow+Capacity+Upgrade+%2828%22x19%22%29&part_id=39583&aaia_id=1031971 1975 Chevrolet C20 Pickup - 7.4 liter V8 radiator, 4-row capacity upgrade] (and, same radiator in aluminum: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+All+Aluminum+4%2DRow+Capacity+%2828%22X19%22%29&part_id=218171&aaia_id=1031971 here]). | *Mid-70's Chevrolet truck with a 454. For example: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+Name+Brand+4%2DRow+Capacity+Upgrade+%2828%22x19%22%29&part_id=39583&aaia_id=1031971 1975 Chevrolet C20 Pickup - 7.4 liter V8 radiator, 4-row capacity upgrade] (and, same radiator in aluminum: [http://www.radiatorexpress.com/product.asp?part=1975+CHEVROLET+C20+PICKUP++%2D+7%2E4+liter+V8+RADIATOR+All+Aluminum+4%2DRow+Capacity+%2828%22X19%22%29&part_id=218171&aaia_id=1031971 here]). | ||
− | ==Cadillac radiator swap== | + | ===Cadillac radiator swap=== |
Any of the Fleetwoods or Eldorados from '70 to '76 with a 472 or 500 will work, but the '76's used the 500 inch motor for sure. | Any of the Fleetwoods or Eldorados from '70 to '76 with a 472 or 500 will work, but the '76's used the 500 inch motor for sure. | ||
Line 74: | Line 70: | ||
Now, you will have a radiator that will cool anything and you still have the stock attachment of the stubs to the recipient vehicle so you can use simple hand tools to disassemble the whole mess later if you have to. It'll all come out as one piece -- because it is one piece. | Now, you will have a radiator that will cool anything and you still have the stock attachment of the stubs to the recipient vehicle so you can use simple hand tools to disassemble the whole mess later if you have to. It'll all come out as one piece -- because it is one piece. | ||
− | |||
− | |||
This swap may not be for everyone, you will have to judge that for yourself. Consideration should be given to the weight of the system when at full capacity, this could mean as much as 25 to 50 extra pounds on the front end. This swap does give you valuable information on limits of fan installation and mounting of core. | This swap may not be for everyone, you will have to judge that for yourself. Consideration should be given to the weight of the system when at full capacity, this could mean as much as 25 to 50 extra pounds on the front end. This swap does give you valuable information on limits of fan installation and mounting of core. | ||
− | == Directing | + | ==Directing air flow== |
− | + | ||
This is one of the most important points of engine cooling and heat disbursal, moving the air through the radiator. In order for cooling to take place, the air MUST move through the radiator fins and by way of convection the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air MUST pass through the radiator, NOT OVER OR AROUND IT. Seal up hood to rad cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan. Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason. | This is one of the most important points of engine cooling and heat disbursal, moving the air through the radiator. In order for cooling to take place, the air MUST move through the radiator fins and by way of convection the cooler air will remove the heat from the engine coolant to the outside air flow. For this to happen, the frontal area of the vehicle must be clear and the entering air must not be blocked. The radiator fins must be clean, clear and unblocked by mechanical damage, i.e. folded over fins, plugged by bugs and dirt. The air MUST pass through the radiator, NOT OVER OR AROUND IT. Seal up hood to rad cradle air spaces with sheet metal or rubber sheeting. The fan shroud should contain at least 90% of the fan blade circumferentially and the edges should be sealed to the contours of the radiator for maximum suction by the fan. Hot exhausted air should have an escape route out of the engine compartment. If it doesn't, make louvers or outside air scoops. Direct air to pass over the engine and exhaust manifolds or headers and out the bottom and sides away from the passenger compartment. Don't remove the rubber skirts from the inner wheel wells over the suspension, they are there for a reason. | ||